

Communications
2015; 3(5): 128-136

Published online August 17, 2015 (http://www.sciencepublishinggroup.com/j/com)

doi: 10.11648/j.com.20150305.18

ISSN: 2328-5966 (Print); ISSN: 2328-5923 (Online)

Effects of Linux Scheduling Algorithms on Mininet Network
Performance

Mohammed Basheer Al-Somaidai, Estabrak Bassam Yahya

Dept. of Electrical Engineering, Mosul University, Mosul, Iraq

Email address:
mohammedbasheerabdullah@uomosul.edu.iq (M. B. Al-Somaidai), eng_est_1990@yahoo.com (E. B. Yahya)

To cite this article:
Mohammed Basheer Al-Somaidai, Estabrak Bassam Yahya. Effects of Linux Scheduling Algorithms on Mininet Network Performance.

Communications. Vol. 3, No. 5, 2015, pp. 128-136. doi: 10.11648/j.com.20150305.18

Abstract: Software Defined Network (SDN) is considered a burgeoning technology in the field of computer networks

particularly and in communication technologies in general. A promising architecture of SDN mainly depends on decoupling

mechanisms of the control and management plane from the data forwarding plane in network device. Besides, the use of

programmable interfaces between network layers. In another word, SDN uses open, flexible, and dynamic architecture that is

defined through the use of different software's programming languages. Simulation and emulation network platforms play an

important role in studying and evaluating different networks design and performance. Mininet is the most popular SDN platform.

This research is concerned with the impacts of operating system scheduling algorithms used by Mininet emulator on network

performance with different controllers and topologies types and sizes. It has been noted that network performance under PROC

scheduling algorithm was better and more stable than those under CFS or RT scheduling algorithms. As well, when network

topology be more complicated, i.e. contains a large number of switches and presence of loops, the network performance is worse

than that with simple topology especially, this case is more worse with RT scheduling algorithm.

Keywords: SDN, Mininet, RT, CFS, PROC

1. Software Defined Networks (SDN)

Computer networks technologies are constantly evolving

and during the last decade, they changed our lifestyles in many

aspects. People in the world use the unlimited services that are

provided by Internet networks more and more every day. They

use Internet for research, education, businesses, online banking,

online gaming, shopping, and the new social networking

applications. Thus, the Internet networks based on current

architecture have become too complicated and gigantic. In

addition, current network devices have specific complex

structure, which combines control and management operations

along with data forwarding operation in the same physical

device. A solution that is able to meet the requirements of

continuous network development and provide dynamic base

environment is needed. Software Defined Networking (SDN)

technology may play an important role to solve computer

networks challenges [1,2]. SDN technology is getting a lot of

interest around the world. Furthermore, SDN architecture and

concept can be integrated in smart ways with other network

technologies such as Network Functions Virtualization (NFV),

cloud computing, Internet of Things (IoT) and Data Center

(DC)/WAN technologies [3-5]. Therefore, observers are

talking about a great and prosperous future for the software

defined networking (SDN) in particular along with information

technology and electronic services in general in various aspects

of life.

Based on SDN technology, the control and management

plane is physically segregated from the data forwarding plane,

where the data forwarding plane resides on network devices

and the logical mechanism function to control and manage

network performance is put in centralized unit represented by

the controller [1,6,7]. The controller runs special software that

is written using one of the programming languages such as C/

C++, Java, and Python to take decisions about the forwarding

method for new incoming packets in each network device,

while the forwarding plane in physical devices performs packet

forwarding based on these decisions. SDN designers use open

Application Programming Interfaces (APIs) to communicate

between software controller and other network layers

(physical/application), where network engineers are able to use

this APIs to configure network behavior in such a way and

provide backward compatibility with new applications [7]. Fig.

1 shows SDN architecture model. The separation of control and

management function from network forwarding device and put

 Communications 2015; 3(5): 128-136 129

it in a centralized unit besides the use of open APIs provides

flexible, programmable, cost effect, vendor agnostic and active

network architecture [8]. The OpenFlow wire protocol

represents the most prominent communication southbound

APIs that are used in SDN architecture to connect the control

and management unit (i.e. the controller) with the data

forwarding unit (i.e. OpenFlow switches) over a secure channel

using Transport Layer Security (TLS) or over a Transmission

Control Protocol (TCP) channel. It has the capability to

establish control session with controller, modify matching

entries that are used by the switch to forward a packet, specify

actions that will be executed against each matched packet, and

defining a structure of different messages types such as flow

modification messages, statistical description messages, error

messages, switch status messages, and several other messages

[9, 10].

Fig. 1. SDN architecture model.

2. Related Works

B. Lantz, et. al. [11] analyzed the performance of Mininet

emulator; which is a virtual environment developed by

Stanford University that can be used to emulate a number of

nodes in virtual network within single test machine, in order to

develop, interact with, and customize the SDN concept with

OpenFlow protocol. This study showed Mininet ease of use,

scalability, and limitations.

S. Yeganeh, et.al. [12] studied the concept of decupling

control and management plane from data forwarding plane in

SDN and discussed scalability trade-offs in SDN design space

and challenges in this field. The overload on controller plays

the pivotal role in network scalability based on SDN paradigm

but SDN architecture is considered very promising to solve

these challenges in the future.

M. GroBmann, and S. Schuberth [13] developed a method to

initialize automatically virtual network topologies built in

Mininet through the use of Internet Topology Zoo (ITZ); which

can be defined as a store for data of network topologies in

graphical formats, to build up real-world test-suites at small

scale. Also, they developed a distributed test suite for

evaluation purposes that uses a Distributed Internet Traffic

Generator (D-ITG). The method of building network

topologies proposed in this work provides an efficient and easy

way to construct virtual network topology in Mininet without

the need to use Python script.

B. Astuto, et.al. [14] provided historic review about

programmable network idea from its beginning time down to

the SDN revolution. The study presented the architecture of

SDN and discussed OpenFlow features, application and related

software to deploy and develop SDN networks based on

OpenFlow standard, which includes emulation/simulation

platforms, software controllers and virtual/current

implementation of programmable switches.

P. Wette, et.al. [15] proposed MaxiNet platform to extend

Mininet emulator to span an emulated network over several

physical test machines in order to solve scalability challenge

that faced performance of Mininet and constrained its use to

build networks that have only several hundred nodes as a result

of resources limitation. This approach of distributed emulation

of SDN enables researchers to emulate large network such as

data center network. Therefore, they introduced a traffic

generator for data center traffic and used it in emulated network

example about data center consisting of 3200 hosts on a cluster

of only 12 physical test machines.

3. Mininet SDN Platform

There is a number of simulation/emulation platforms that

could be used to study and evaluate SDN concept in virtual

environment. Mininet emulator is considered the most popular

and efficient SDN based OpenFlow protocol platform due to a

number of features it supports including integrity, flexibility,

availability, and simplicity in building SDN network. Such

networks contain OpenFlow switches, controllers, hosts, and

connecting them either through Ethernet interfaces, or by

secure interfaces based upon Secure Shell (SSH) protocol in a

single Linux kernel [11]. Mininet uses Ubuntu Linux

distribution with a different version as an operating system. In

addition to the capability to use Fedora Linux operating system

but with some limitations in supporting a number of features.

Furthermore, It uses lightweight virtualization methods to

provide efficient test environment in a single test machine

which gives the developer or the researcher complete vision

about real test bed network performance.

In Mininet both the controllers and the switches can be

installed and run either on the user namespace or in the kernel

namespace to accelerate its performance. Besides, each host in

Mininet represents a standalone shell process that behaves like

an actual real machine which can be used to represent terminal

edge in network or to represent a server program such as HTTP

server and FTP server, etc. A host in Mininet connects directly

130 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Effects of Linux Scheduling Algorithms on Mininet

Network Performance

with main Mininet module (mn). Fig. 2 shows an example of a

small network in Mininet [11,5]. The network elements can

interact with each other and debugging is done using Command

Line Interface (CLI). This method of virtualization provides

best sharing mechanism for resources of the operating system,

fast network boot up, and easy to setup network elements.

Fig. 2a. Example of a small network in Mininet.

Fig. 2b. Network implementation in Mininet.

On the other hand, Mininet has limitations in scalability for a

very large network where it basically depends on the emulating

machine specifications which include CPU type, CPU

frequency, system memory size, and RAM memory size [11].

The resources of the laptop that was used in this research are an

Intel core™ i5-3320MB CPU@2.60GHzx4 with RAM:8GB,

128GB SSD, 500GB hard disk with Ubuntu 12.04 LTS-32-bit,

and a kernel Linux 3.11.0-15-generic as operating system.

4. Linux Scheduling Algorithms

As mentioned above Mininet emulator basically uses

Ubuntu Linux distribution to run its platform models and it is

integrated with kernel programs to build, configure, analyse,

and interact with designed networks. Linux is considered one

of the most important open source, powerful, flexible, and a

permanently up to date operating systems [16]. It provides a

number of features to the user that cannot be found in other

operating systems such as long running time without shutdown

or reduction in system performance, multiple users who have

access to the system and perform multiple tasks at the same

time.

One of the major goals of operating system designers is to

minimize overhead and delay of operating system services.

Therefore, they choose a certain scheduling algorithm to

improve operating system performance. In Linux, a number of

scheduling algorithms can be used and that depends on its

performance on the division of the CPU cycle in the form of

time slices that are used to run several tasks. Time slices are

allocated to each task according to task priority and policies

used by this task. This is obtained because system timer

performs periodic interrupts so that the scheduler can choose

the task that will be executed in the next CPU time slice. The

tasks that are run on Linux can explicitly be classified into four

classes. They are Real Time (RT) scheduling class, Fair

scheduling class, and two special purpose scheduling classes

which include idle scheduling class, and stop scheduling class

[17]. Mininet emulator can use RT, or CFS scheduling

algorithm to schedule its processes and share the system

resources.

4.1. Rt Scheduling Algorithms

Real time processes have very strict timing processing and

scheduling conditions. Therefore, the process by the CPU units

to prevent loss of incoming real data or sequential processing

operations should never be delayed [18]. Typical real time

programs are video and audio programs, controller programs,

and measurement and monitoring programs etc. There are two

RT scheduling modes, the first one is called SCHED_FIFO

(First in-First out) mode where the current higher priority task

doesn't have a limited time slice and should be executed until

be terminated. The other mode is called SCHED_RR (Round

Robin) mode where every task has a specific number of time

slices to execute and when this time is over the task is added to

the end of queue and its time slices are assigned to the next real

time task [17].

4.2. Fair Scheduling Algorithms

The delay problem in earlier Linux kernels scheduling

algorithms such as O(1) scheduling algorithm has been

resolved in Linux kernel 2.6.23 through the Completely Fair

Scheduling (CFS) algorithm that is designed to ensure fairness

between tasks by dividing CPU time among runnable tasks in

approximately ideal case using high resolution

nanosecond-accurate time slices. For example, if two tasks

would be runnable, they would apparently get 50% processing

 Communications 2015; 3(5): 128-136 131

power for each. Therefore, assuming the two tasks are to be

started at the same time, the execution time or runtime of each

task at any moment is exactly the same, therefore completely

fair. That means, each task runs for an infinitesimal small

amount of time but with full processing power, then the full

processing power is switched to the other task.

Since it is physically not possible to drive current processors

in that way and it is highly inefficient to run for very short

times due to switching cost, CFS tries to approximate this

behavior as closely as possible. It keeps track of the runtime of

each runnable task. It is called virtual runtime, and tries to

maintain an overall balance between all runnable tasks at all

times [17].This means that CFS uses dynamic time slices with

value which depends on task priority, and current tasks load in

the system [19].

Besides the possibility to use RT and CFS, Mininet has

another scheduling algorithm called "PROC". In this algorithm

file system, user ID space, process ID space, kernel, shared

libraries, device drivers and other common node are shared

between processes that arrange as a control group (cgroup) [11].

CPU time is fairly shared among all cgroups which have not

been used up their time slice for the given period. This feature

has similar goals to the Linux real time (RT) scheduler, which

also limits process time execution, but differs in that when no

limits are set; it acts in a work-conserving mode identical to the

default Linux completely fair scheduler (CFS).

5. Research Methodology

Fig. 3. Tree (3,3) network topology.

Tests in this research include the effect of CFS, RT, and

PROC scheduling algorithms with varying CPU time values.

Mininet package has a number of Python script examples that

are used to define Mininet capability and the user can modify

them to create new functionality. In order to implement an easy

method of the designed test in Mininet, we modified cpu.py

example script to implement tree topology (depth=3, fan out=3)

as shown in Fig. 3, where the network has 13 switches and 27

hosts in three cases. The first case, we built an OpenFlow

network that uses Open vSwitch which supports version 1.3

and are controlled either by OpenFlow remote controller or by

control and administration tool (ovs-ofctl) to add proactive

flow entries. The second case, we used an Open vSwitch in

standalone mode (non-OpenFlow) to represent conventional

network. Finally, in the third case, the network has both

OpenFlow and non-OpenFlow switches to represent a hybrid

network. For each network case, the amount of end-to-end

throughput is calculated (i.e. the test is done between first host

in network h1 and the last host in the network h27) under the

effect of using different scheduling algorithms RT,CFS, and

PROC with varying CPU time values from (1%-100%).

Fig. 4a. Methodology of scheduling algorithms tests using remote controller.

132 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Effects of Linux Scheduling Algorithms on Mininet

Network Performance

Fig. 4b. Methodology of scheduling algorithms tests using ovs-ofctl tool.

Fig. 4c. Methodology of scheduling algorithms tests for conventional network.

Fig. 4 illustrates methodologies used in each case. After

initializing Mininet libraries which are represented by classes,

and functions used to build and configure network nodes

(switches, controller, and hosts) and building network topology,

the scheduling algorithm will be chosen and the duration of the

time slices for each host in the network is specified. When

network starts, each switch in the network is configured to

support OpenFlow 1.3 using ovs-vsctl configuration tool.

Besides, in case of using an ovs-ofctl to control switches

behavior, the flow entries that define the path between hosts

will be stored in switches (proactive flow entries) without the

need to use any controller. Two simple benchmarks (Ping, and

Iperf) were used to validate network connection and calculate

end-to-end network throughput respectively.

The amount of throughput is also affected by network

topology as a result to complex processes needed to perform

topology discovery mechanisms by the controller and finding

the path between source and destination for transmitted packets

especially when the network has loops. Therefore, the above

methodology is repeated for different topologies.

 Communications 2015; 3(5): 128-136 133

6. Results and Discussion

Tests are carried out for three cases of networks to study the

effects of different scheduling algorithms, which include RT,

CFS, and PROC as illustrate in the previous section. The first

case is OpenFlow based network using tree (3,3) topology

controlled by remote controller (Ryu, OVS-controller) or

controlled by proactive entries added by ovs-ofctl

administration tool. Fig. (5), (6), and (7) show these tests

results. The results show the throughput as a function of CPU

time for the three scheduling algorithms using log-log scale,

where the PROC scheduler, which is designed to provide high

level of virtualization and resource sharing in Mininet

environment, has the best performance while the other two

schedulers have weak performance for short CPU time (i.e.

less than 10%). Furthermore, from the results, it can be noted

that the OpenFlow network controlled by OVS controller has

the worst change and less amount of throughput on the contrast

of the results of using Ryu and ovs-ofctl tool.

Fig. 5. End-to-End throughput in OpenFlow network controlled by OVS

controller.

Fig. 6. End-to-End throughput in OpenFlow network controlled by Ryu

controller.

Fig. 7. End-to-End throughput in OpenFlow network controlled by ovs-ofctl.

Fig 8. End-to-End throughput in conventional network.

Fig. 9. End-to-End throughput in hybrid network controlled by OVS controller.

Fig. 10. End-to-End throughput in hybrid network controlled by RYU

controller.

The second case is a conventional network (non-OpenFlow

network). Fig. 8 shows the throughput in conventional network

for different scheduling algorithms. When compare between

the results of OpenFlow network and conventional network, it

has been noted that the segregation of control and management

logical functions from data forwarding units does not affect the

network performance. Fig. 9, and 10 show the results of the

third case for a hybrid network which runs both OpenFlow

switches and non-OpenFlow switches (conventional switches).

It can be seen that the amount of network throughput is less

than pure OpenFlow network or pure conventional network as

a result to the complexity of the method to control the network,

and the need to additional processing to achieve compatibility

between OpenFlow switches and conventional switches.

The amount of end-to-end throughput with different

scheduling algorithms is affected when we change the network

topology as a result of additional processing to discover

network topology with increase in network size, increase in the

number of paths between nodes, and presence of loops in the

134 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Effects of Linux Scheduling Algorithms on Mininet

Network Performance

network and this leads to change in routing roles required to

direct packets through the network. A number of topology

types and sizes were tested with different scheduling

algorithms and the results are shown in Fig. 11, 12, 13, and 14.

Fig. 11a. End-to-End throughput in single (2) OpenFlow network controlled by

Ryu controller.

Fig. 11b. End-to-End throughput in single (25) OpenFlow network controlled

by Ryu controller.

Fig. 12a. End-to-End throughput in linear (3) OpenFlow network controlled by

Ryu controller.

Fig. 12b. End-to-End throughput in linear (25) OpenFlow network controlled

by Ryu controller.

Fig. 13a. End-to-End throughput in tree (2,2) OpenFlow network controlled by

Ryu controller.

Fig. 13b. End-to-End throughput in tree (5, 2) OpenFlow network controlled

by Ryu controller.

Fig. 14a. End-to-End throughput in mesh (2, 2) OpenFlow network controlled

by Ryu controller.

Fig. 14b. End-to-End throughput in mesh (5, 5) OpenFlow network controlled

by Ryu controller.

From the results, the single topologies have the best

throughput and performance with different scheduling

algorithms because of having a single switch and direct path for

each host, which will cause low processing operations. Linear,

tree, and mesh topologies have many switches connected with

 Communications 2015; 3(5): 128-136 135

each other in a certain way leading to the presence of different

paths between hosts. Therefore, they need a lot of processing to

detect path between hosts. This is shown clearly in mesh (5, 5)

network, where there are several paths to achieve

communication between any two points, which requires the use

of spanning tree protocol (STP) to find a path. In this case, the

RT scheduling algorithms fails to achieve a stable performance

of the network, while both of CFS and PROC scheduling

algorithms have a better performance, especially for large CPU

time (Fig. 14 b). This bad performance can be considered one

of the limitations faced the work on virtual tests environment

and currently there are many attempts to address these

limitations. One of the important ways of these attempts

through the use of virtualization technologies such as

multi-core processor virtualization and network virtualization

(i.e. network slices).

7. Conclusions

Through the study in this research we can note that the

network performance is affected by the amount of available

resources and properties in the operating systems to run

different network elements including software switches and

controllers. This is considered one of the main determinants

facing the expansion in construction of large networks either in

the virtual environment or in testbed. In Mininet, The type of

scheduling algorithms used by the operating system to manage

processes execution and the amount of CPU time for each

process affects network throughput. When the percentage of

CPU time is smaller than 10% and we used RT or CFS

scheduling the end-to-end throughput was smaller than the

amount of throughput when we used PROC scheduling

algorithm. Therefore, network performance under PROC

scheduling algorithm, which is chosen as a default scheduling

algorithm for Mininet emulator, was better and more stable

than that under CFS or RT scheduling algorithms. Besides, the

number of switches and how to shape with each other to

construct network topology have an axial effects on network

performance as a result to the need of a lot of processing to find

path between any two ends. RT scheduling algorithm has been

showed the worse performance along with large processing

time followed by CFS and PROC scheduling algorithm. We

aim through this work to shed some light over the limitations

facing the construction of SDN networks either in virtual test

and evaluation environment or in testbed. In another study, we

will look forward to overcome some of these limitations

including scalability restriction through using virtualization

technologies to simplify network topology and best system

resources sharing among network components.

References

[1] Open Network Foundation (ONF),"Software-defined
networking: the new norm for networks", April 2012, Available
at: https://
www.opennetworking.org/images/stories/downloads/openflow/
wp-sdn-newnorm.pdf, accessed on 25/10/2014.

[2] L. MacVittie, "The Programmable Network", white paper, F5
Networks, Inc., 2013.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S.
Stuart and A. Vahdat, "B4: experience with a globally-deployed
software defined WAN", SIGCOMM’13 Hong Kong, China, pp.
3-14, August 2013.

[4] Migration Working Group, "Migration use cases and methods",
Open Networking Foundation (ONF), February 2014, available
at : https://
www.opennetworking.org/images/stories/downloads/sdn-resour
ces/use-cases/Migration-WG-Use-Cases.pdf, accessed on
25/10/2014.

[5] Open Network Foundation (ONF), "OpenFlow-enabled SDN
and network functions virtualization", February 2014, available
at :https://www.opennetworking.org/images/stories/downloads/
sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf, accessed
on 25/10/2014.

[6] T. Nadeau and K. Gray, "SDN: Software Defined Networks",
first ed., O’Reilly Media, Inc., August 2013.

[7] Open Network Foundation (ONF), "SDN architecture", June
2014, available at: https://
www.opennetworking.org/images/stories/downloads/sdnresour
ces/technical reports/TR_SDN_ARCH_1.0 _06062014.pdf,
accessed on 25/10/2014.

[8] S. Azodolmolky, "Software Defined Networking with
OpenFlow", Packt Publishing, 1st ed., October 2013.

[9] Open Network Foundation (ONF), "OpenFlow switch
specification, version 1.4.0 (wire protocol 0x05)", October 2013.
Available at:
https://www.opennetworking.org/images/stories/downloads/sdn
resources/onfspecifications/openflow/openflow-spec-v1.4.0.pdf,
accessed on 25/10/2014.

[10] A. Clemm, and R. Wolter, "network-embedded management and
applications understanding programmable networking
infrastructure", Springer New York, 2013.

[11] B. Lantz, B. Heller, and N. McKeown, "A network in a lap-top:
rapid prototyping for software-defined networks", In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks New York, 2010.

[12] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, "On scalability of
software-defined networking", IEEE Communications
Magazine, February 2013.

[13] M. Großmann, S. Schuberth, "Auto-Mininet: assessing the
Internet topology zoo in a software-defined network emulator",
7ter Workshop Leitungs-, (MMBnet 2013), Hamburg, Germany,
2013.

[14] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T.
Turletti, "A survey of software-defined networking: past,
present, and future of programmable networks", IEEE
Communications Surveys & Tutorials, in press, January 2014.

[15] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. Zahraee,
and H. Karl, "MaxiNet: distributed emulation of
software-defined networks", IFIP networking conference,
copyright © ISBN 978-3-901882-58-6, 2014.

[16] G. Glass, K. Ables, "Linux for programmers and users", Prentice
Hall, copyright © Pearson Education, Inc., February 2006.

136 Mohammed Basheer Al-Somaidai and Estabrak Bassam Yahya: Effects of Linux Scheduling Algorithms on Mininet

Network Performance

[17] C. Blue, V. Seeker, "Process scheduling in Linux", University of
Edinburgh, December 2013, available
at:http://www.criticalblue.com/news/Wpcontent/uploads/2013/
12/linux_scheduler_notes_final.pdf on 25/10/2014.

[18] D. Bovet, M. Cesati, "Understanding the Linux kernel", O'Reilly,
1st. ed., October 2000.

[19] G. Cheng, "A comparison of two Linux schedulers", M.Sc.
Thesis, Oslo and Akershus University, College of Applied
Sciences, 2012.

