

Communications
2017; 5(4): 29-50

http://www.sciencepublishinggroup.com/j/com

doi: 10.11648/j.com.20170504.11

ISSN: 2328-5966 (Print); ISSN: 2328-5923 (Online)

Development of an Extended Improvement on the
Simplified-Bluestein Algorithm

Amannah Constance Izuchukwu, H. C. Inyiama

Department of Computer Science, University of Nigeria, Nsukka, Nigeria

Email address:

To cite this article:
Amannah Constance Izuchukwu, H. C. Inyiama. Development of an Extended Improvement on the Simplified-Bluestein Algorithm.

Communications. Vol. 5, No. 4, 2017, pp. 29-50. doi: 10.11648/j.com.20170504.11

Received: December 21, 2017; Accepted: January 4, 2018; Published: January 31, 2018

Abstract: This research was designed to develop an extended improvement on the simplified Bluestein algorithm (EISBA).

The methodology adopted in this work was iterative and incremental development design. The major technologies used in this

work are the numerical algorithms and the C
++

 programming technologies and the wave concept technology. The C
++

 served as

a signal processing language simulator (SPLS). In the EISBA, the DSP input is encountered first. It is subjected to some

numerical processing which included testing for efficiency on the C
++

 platform. This test platform provided the basis for

comparison leading to the desired EISBA. The approach adopted in the study was the re-indexing, decomposing, and

simplifying the default SBFFT algorithm. The computing speed of the default algorithms was tested on the C
++

 platform. The

average execution time of the SBFFT was 3.50 seconds. Similarly, the average execution time of the EISBA was 1.74 ms. this

result therefore shows that a version of algorithm with computing speed that is faster than that of SBFFT algorithm exist. The

algorithms were tested on input block of width 1000 units, and above, and can be implemented on input size of 100 000, and

1000 000 000 without the challenge of storage overflow. The input samples tested in this work was the discretized pulse wave

form with undulating shape out of which the binary equivalents were extracted. Other forms of signals may also be tested in

the EISBA provided they are interpreted in the digital wave type.

Keywords: Development, Extended, Algorithm, Simplified, Bluestein, Fourier, Transform

1. Introduction

(1). BACKGROUND TO THE STUDY

The most popular digital filters are described and

compared in this work. There are only two ways that are

common for information to be represented in naturally

occurring signals. We will call this information represented in

the time domain, and information represented in the

frequency domain. Analog signals can also be processed

digitally using Digital Signal Processing techniques (DSPTs).

To process analog signals digitally, an interface between the

analog signal and a digital processor is required. This

interface is known as analog-to-digital converter (ADC). The

output of the analog-to-digital converter is a digital signal.

This digital signal is appropriate for digital processor. The

digital signal processor may be a large programmable digital

computer or a small microprocessor. In electronics, computer

science and mathematics, a digital filter is a system that

performs numerical operations on a sampled, discrete-time

signal to reduce or enhance certain aspects of that signal.

The extended improved simplified Bluestein algorithm

(EISBA) will prove to be an adequate technology for transiting

from analog to digital broadcasting in Nigeria and elsewhere in

the world.. The major technologies used in this work are the

numerical algorithms and the C
++

 programming technologies

and the wave concept technology. Numerical algorithms are

used as filters to manipulate or process digital signals so that

their operation times can be determined and compared

accordingly. The C
++

 technology is used to implement the

proposed EISBA. The C
++

 here acted as a signal processing

language simulator (SPLS). The SPLS simulated the designed

EISBA using sampled input data available in the warehouse.

The wave concept technology is used to represent discrete data

samples expressed in binary format. The undulating shape of

the wave indicates the binary values it contains. The lower

bound of the wave represents zero while the upper bound

represents one. When the binary values are collected together,

they can be further converted into numerical or decimal values

30 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

at which point, they can be used in testing the algorithms, the

existing and the proposed.

STATEMENT OF THE PROBLEM

The speed and scope of transmitting from analog to digital

remain issues that need scientific resolution. In view of the

foregoing and for effective transition from analog to digital

transmission, an efficient computing algorithmic platform is

a requirement. This research is therefore designed to develop

an efficient numerical algorithm necessary for achieving the

speed of processing digital signals in digital computers.

(2). AIM OBJECTIVES OF THE STUDY

The aim of the study is to develop an extended

improvement on the simplified Bluestein algorithm. In order

to attain this aim, the following objectives were considered;

a) To investigate the simplified Bluestein fast Fourier

transforms (SBFFT) algorithm for Digital Signal

Processing

b) To design an EISBA for Digital Signal Processing

c) To determine the computing speed improvement of the

EISBA for Digital Signal processing

d) To apply warehouse input technology to test and

compare the speed of the SBFFT algorithm with the

faster Bluestein numerical algorithm

(3). SCOPE OF THE STUDY

This study is restricted to the software approach of DSP-

algorithm implementation on a minicomputer or a personal

computer. A detailed discussion of hardware, firmware, and

DSP chip implementation is beyond the scope of this study.

SIGNIFICANCE OF THE STUDY

The EISBA will provide part of the required directions for

transiting from terrestrial analog broadcasting to digital

broadcasting. The developed EISBA when implemented will

provide an optimized computing framework for simulating signals

associated with speech, image, communication, and so on.

2. Related Literature

2.1. Theoretical Framework

Theories related to signal transmission, conversion and

processing are discussed, below.

(1). Shannon-Hartley theorem [1]

The Shannon–Hartley theorem [1] states the channel

capacity C, meaning the theoretical tightest upper bound on

the information rate of data that can be communicated at an

arbitrarily low error rate using an average received signal

power S through an analog communication channel subject to

additive white Gaussian noise of power N:

C = Blog2 (1+ S/N) (1)

where;

C is the channel capacity in bits per second, a theoretical

upper bound on the net bit rate (information rate, sometimes

denoted I) excluding error-correction codes;

B is the bandwidth of the channel in hertz (passband

bandwidth in case of a bandpass signal);

S is the average received signal power over the bandwidth

(in case of a carrier-modulated passband transmission, often

denoted C), measured in watts (or volts squared);

N is the average power of the noise and interference over

the bandwidth, measured in watts (or volts squared); and

S/N is the signal-to-noise ratio (SNR) or the carrier-to-

noise ratio (CNR) of the communication signal to the noise

and interference at the receiver (expressed as a linear power

ratio, not as logarithmic decibels).

In information theory, the Shannon–Hartley theorem tells

the maximum rate at which information can be transmitted

over a communications channel of a specified bandwidth in

the presence of noise. It is an application of the noisy-

channel coding theorem to the archetypal case of a

continuous-time analog communications channel subject to

Gaussian noise. The theorem establishes Shannon's channel

capacity for such a communication link, a bound on the

maximum amount of error-free information per time unit that

can be transmitted with a specified bandwidth in the presence

of the noise interference, assuming that the signal power is

bounded, and that the Gaussian noise process is characterized

by a known power or power spectral density. The law is

named after Claude Shannon and Ralph Hartley.

(2). Noisy Channel Coding Theorem and Capacity [2]

The Shannon theorem states that given a noisy channel

with channel capacity C and information transmitted at a rate

R, then if R<C there exist codes that allow the probability of

error at the receiver to be made arbitrarily small. This means

that, theoretically, it is possible to transmit information nearly

without error at any rate below a limiting rate, C.

In information theory, the noisy-channel coding theorem

(sometimes Shannon's theorem), establishes that for any

given degree of noise contamination of a communication

channel, it is possible to communicate discrete data (digital

information) nearly error-free up to a computable maximum

rate through the channel.

Figure 1. Block Diagram of Noisy-Channel Coding Theorem SOURCE: [2].

2.2. History of Digital Signal Processing (DSP)

Digital signal processing (DSP) became a discipline about

20 years ago, although its roots date longer. According to [2],

DSP is the generic term for techniques such as filtering or

spectrum analysis applied to digitally sampled signals,

mathematical analysis of inherently digital signals (examples

sunspot data, tide data) was developed by Gauss (1800),

Schuster (1896) and many others. Electronic DSP was first

extensively applied in geophysics (for oil-exploration) then

military applications, and is now fundamental to

communications, mobile devices, broadcasting, and most

applications of signal and image processing. The spark that

generated the ensuing great activity was the realization that

digital computer technology was on the verge of great leaps

forward in both speed and miniaturization. This made it

 Communications 2017; 5(4): 29-50 31

possible to predict that traditional analog processing devices

such as filters and spectrum analyzers would become digital

and result in big improvements for many applications.

Acoustic signals such as speech, seismic, and sonar signals

were prime candidates for digital processing because of their

relatively low bandwidths [2].

According to [2, 3], DSP originated in the 1960s and

1970s when digital computers first came into limelight.

Computers were expensive during this era, and DSP was

limited to only a few critical applications. Pioneering efforts

were made in four key areas: radar and sonar, where national

security was at risk; oil exploration, where large amounts of

money could be made; space exploration, where the data are

irreplaceable; and medical imaging, where lives could be

saved. The personal computer revolution of the 1980s and

1990s caused DSP to explode with new applications. Rather

than being motivated by military and government needs, DSP

was suddenly driven by the commercial marketplace. Anyone

who thought they could make money in the rapidly

expanding field was suddenly a DSP vendor. DSP reached

the public in such products as: mobile telephones, compact

disc players, and electronic voice mail.

DSP algorithms have long been run on standard

computers, specialized processors called digital signal

processor on purpose-built hardware such as application-

specific integrated circuit (ASICs). Today there are additional

technologies used for digital signal processing including

more powerful general purpose microprocessor, field-

programmable gate arrays (FPGAs), digital signal controllers

and stream processors, among others.

2.3. Fast Fourier Transforms (FFT)

[4, 5] indicated that the FFT revolutionized DSP. It is an

elegant and highly effective algorithm that is still the

building block used in many state-of-the-art algorithms in

speech processing, communications, frequency estimation.

There are many different FFT algorithms involving a wide

range of mathematics, from simple complex-number

arithmetic to group theory and number theory. The DFT is

obtained by decomposing a sequence of values into

components of different frequencies. An FFT is a way to

compute the same result more quickly: computing the DFT

of N points in the naive way, using the definition, takes O

(N2) arithmetical operations, while an FFT can compute the

same DFT in only (NlogN) operations. The difference in

speed can be enormous, especially for long data sets where N

may be in the thousands or millions. In practice, the

computation time can be reduced by several orders of

magnitude in such cases, and the improvement is roughly

proportional to (NlogN). The FFTs are of great importance to

a wide variety of applications, from digital signal processing

and solving partial differential equations to algorithms for

quick multiplication of large integers. The best-known FFT

algorithms depend upon the factorization of N, but there are

FFTs with (NlogN) complexity for all N, even for prime N.

Many FFT algorithms only depend on the fact that ��
���
�

is an

N-th primitive root of unity, and thus can be applied to

analogous transforms over any finite field, such as number-

theoretic transforms. Since the inverse DFT is the same as

the DFT, but with the opposite sign in the exponent and a
1 �	 factor, any FFT algorithm can easily be adapted for it.

Let x0,…, x � − 1 be complex numbers. The DFT is

defined by the formula

�� = ∑ ��������	���
���

�
� 	� = 0,… . � − 1 (2)

Evaluating this definition directly requires o ���
operations; there are N outputs XK, and each output requires a

sum of N terms (Johnson and Frigo, 2007).

2.4. Discrete Fourier Transform (DFT)

When a signal is discrete and periodic, continuous Fourier

transform is of less importance, [6, 7] instead we use the

discrete Fourier transform, (DFT). Suppose our signal is an

where n = 0... N-1, and an = an +JN for all n and j. The

discrete Fourier transform of a, also known as the spectrum

of a, is:

!� =	∑ ��"��� 	#�$�
���
��� (3)

This is commonly written:

!# =	∑ %�
#&$�

���
��� (4)

Where

%� 	= 	 ��"	��� (5)

And %�
for k=0... N-1 are called the Nth roots of unity.

They’re called this because, in complex arithmetic, �%�
� =

1 for all k. They are vertices of a regular polygon inscribed in

the unit circle of the complex plane (Heckbert, 1998).

2.5. Fast Wavelet Transform (FWT)

The fast wavelet transform (FWT) algorithm is the basic

tool for computation with wavelets. The forward transform

converts a signal representation from the time (spatial)

domain to its representation in wavelet basis. [8, 9] produced

a fast wavelet decomposition and reconstruction algorithm.

The mallat algorithm for discrete wavelet transform (DWT)

is a classical scheme in the signal processing community,

known as a two-channel sub-band coder using conjugate

quadrature filters or quadrature mirror filters (QMFs).

'��(: = 	 2+〈-�. , ∅�2+. − 0 〉 (6)

Where ∅ is the scaling function of the chosen wavelet

transform; in practice by any suitable sampling procedure

under the condition that the signal is highly oversampled, so

2+345�6 : = 	∑ '�(∅	7�(8�&9�∈; (7)

Replacing the Haar basis with a basis of wavelets with

vanishing moments, and assuming that the coefficients

'#< , = = 1,2, … , � are given, we replace the expressions with

the formulae and

32 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

'#+ = ∑ ℎ�'�?�#��
+�����@

��� (8)

A#
+ = ∑ B�'�?�#��

+�����@
��� (9)

Where '#+ and A#
+

 are viewed as periodic sequences with

the period 	2��+ . The formulae defines an orthogonal

mapping: C���+?� → C���+?� , converting the coefficients

'#+��
 with = = 1,2, … , 2��+?� into the coefficients '#+ , A#

+	

with = = 1,2, … 2��+, and the inverse of Oj is given by the

formulae

'��+�� = ∑ ℎ�#'�+ − = + 1#�@
#�� + ∑ B�#

#�@
#�� A��#?�

+
 (10)

'����
+�� = ∑ ℎ�#��'��#?�

+#�@
#�� + ∑ B�#��A��#?�

+#�@
#�� (11)

Obviously, given a function f of the form

-�� =
∑ '#+2

&�(
� F G2��+� − �= − 1 H +�&�(

#��

∑ A#
+2

&�(
� F�2��+� − �= − 1 �&�(

#�� (12)

It can be expressed in the form

-�� ∑ 'I+�I2
&�(JK

� F�2��+?I� − �L − 1 �&�(JM
I�� (13)

With

'I+��, L = 1,2, … . , 2��+?I (14)

2.6. Prime-Factor Fast Fourier Transform

The prime-factor algorithm (PFA), also called the Good–

Thomas algorithm (1958/1963), is a fast Fourier transform

(FFT) algorithm that re-expresses the discrete Fourier

transform (DFT) of a size N = N1N2 as a two-dimensional

N1×N2 DFT, but only for the case where N1 and N2 are

relatively prime. These smaller transforms of size N1 and N2

can then be evaluated by applying PFA recursively or by

using some other FFT algorithm [10].

Prime factor algorithm (PFA) should not be confused with

the mixed-radix generalization of the popular Cooley–Tukey

algorithm, which also subdivides a DFT of size N = N1N2 into

smaller transforms of size N1 and N2. The latter algorithm can

use any factors (not necessarily relatively prime), but it has

the disadvantage that it also requires extra multiplications by

roots of unity called twiddle factors, in addition to the

smaller transforms. On the other hand, PFA has the

disadvantages that it only works for relatively prime factors

(e.g. it is useless for power-of-two sizes) and that it requires a

more complicated re-indexing of the data based on the

Chinese remainder theorem (CRT). Note, however, that PFA

can be combined with mixed-radix Cooley–Tukey, with the

former factorizing N into relatively prime components and

the latter handling repeated factors.

The prime factor algorithm (PFA) is also closely related to

the nested Winograd FFT algorithm, where the latter

performs the decomposed N1 by N2 transform via more

sophisticated two-dimensional convolution techniques. Some

older studies therefore also call Winograd's algorithm a PFA

FFT. Although the PFA is distinct from the Cooley–Tukey

algorithm, Good's 1958 work on the PFA was cited as

inspiration by Cooley and Tukey in their famous 1965 paper,

and there was initially some confusion about whether the two

algorithms were different. In fact, it was the only prior FFT

work cited by them, as they were not then aware of the

earlier research by Gauss and others. [11, 12].

The PFA involves a re-indexing of the input and output

arrays, which when substituted into the DFT formula

transforms it into two nested DFTs (a two-dimensional DFT).

2.7. Bruun’s Algorithm

Bruun's algorithm is a fast Fourier transform (FFT)

algorithm based on an unusual recursive polynomial-

factorization approach, proposed for powers of two by G.

Bruun in 1978 and generalized to arbitrary even composite

sizes by H. Murakami in 1996. Because its operations

involve only real coefficients until the last computation stage,

it was initially proposed as a way to efficiently compute the

discrete Fourier transform (DFT) of real data. Bruun's

algorithm has not seen widespread use, however, as

approaches based on the ordinary Cooley–Tukey FFT

algorithm have been successfully adapted to real data with at

least as much efficiency as possible. Furthermore, there is

evidence that Bruun's algorithm may be intrinsically less

accurate than Cooley–Tukey in the face of finite numerical

precision [13].

Nevertheless, Bruun's algorithm illustrates an alternative

algorithmic framework that can express both itself and the

Cooley–Tukey algorithm, and thus provides an interesting

perspective on FFTs that permits mixtures of the two

algorithms and other generalizations.

�# = ∑ �
���

���
�

���
��� 0=	= = 0,… , � − 1. (15)

For convenience, let us denote the N root of unity by

N�
��0 = 0,… , � − 1 :

N�
� = �����

� �
 (16)

And define the polynomial x (z) whose coefficients are xn

��O ∑ ��O� .���
��� (17)

The DFT can then be understood as a reduction of this

polynomial; that is Xk is given by

�# = ��N�
# = ��O PQA	�O − N�

� (18)

Where mod denotes the polynomial remainder operation.

The key to fast algorithms like Bruun’s or cooley-Tukey

comes from the fact that one can perform this set of N

remainder operations in recursive stages.

2.8. Complex DSP Versus Real DSP

Digital Signal Processing is carried out by mathematical

operations. In comparison, word processing and similar

 Communications 2017; 5(4): 29-50 33

programs merely rearrange stored data. This means that

computers designed for business and other general

applications are not optimized for algorithms such as digital

filtering and Fourier analysis. Digital Signal Processors are

microprocessors specifically designed to handle Digital

Signal Processing tasks [14].

Complex numbers are an extension of the ordinary

numbers used in everyday math. They have the unique

property of representing and manipulating two variables as a

single quantity. This fits very naturally with Fourier analysis,

where the frequency domain is composed of two signals, the

real and the imaginary parts. Complex numbers shorten the

equations used in DSP, and enable techniques that are

difficult or impossible with real numbers alone [14, 15].

Digital Signal Processing (DSP) is a vital tool for scientists

and engineers, as it is of fundamental importance in many

areas of engineering practice and scientific research. The

“alphabet” of DSP is mathematics although most practical

DSP problems can be solved by using real number

mathematics, there are many others which can only be

satisfactorily resolved or adequately described by means of

complex numbers. If real number mathematics is the

language of real DSP, then complex number mathematics is

the language of complex DSP. In the same way that real

numbers are a part of complex numbers in mathematics, real

DSP can be regarded as a part of complex DSP [15].

2.9. Complex Representation of Signals and Systems

Complex numbers offer a compact representation of the

most often-used waveforms in signal processing – sine and

cosine waves [15, 16]. The complex number representation of

sinusoids is an elegant technique in signal and circuit analysis

and synthesis, applicable when the rules of complex math

techniques coincide with those of sine and cosine functions.

Sinusoids are represented by complex numbers; these are then

processed mathematically and the resulting complex numbers

correspond to sinusoids, which match the way sine and cosine

waves would perform if they were manipulated individually.

The complex representation technique is possible only for sine

and cosine waves of the same frequency, manipulated

mathematically by linear systems.

All naturally-occurring signals are real; however in some

signal processing applications it is convenient to represent a

signal as a complex-valued function of an independent

variable. For purely mathematical reasons, the concept of

complex number representation is closely connected with

many of the basics of electrical engineering theory, such as

voltage, current, impedance, frequency response, transfer-

function, Fourier and z-transforms, and so on. Complex DSP

has many areas of application, one of the most important

being modern telecommunications, which very often uses

narrowband analytical signals; these are complex in nature

[16].

2.10. Complex DSP Applications in Telecommunications

Telecommunication systems very commonly require

processing to occur in real time, adaptive complex filtering

being amongst the most frequently-used complex DSP

techniques. When multiple communication channels are to be

manipulated simultaneously, parallel processing systems are

indicated [16, 17]. An efficient Adaptive Complex Filter Bank

(ACFB) scheme is presented here, together with a short

exploration of its application for the mitigation of narrowband

interference signals in MIMO (Multiple-Input Multiple-

Output) communication systems. DSP is making a significant

contribution to progress in many diverse areas of human

endeavour – science, industry, communications, health care,

security and safety, commercial business, space technologies

etc. Based on powerful scientific mathematical principles,

complex DSP has overlapping boundaries with the theory of,

and is needed for many applications in, telecommunications.

Modern telecommunications very often uses narrowband

signals, such as NBI (Narrowband Interference), RFI (Radio

Frequency Interference), and so on. These signals are complex

by nature and hence it is natural for complex DSP techniques

to be used to process them [16, 17, 18]

3. Methodology

The design model adopted in this work was the

Reconstructive Iterative Development Model (RIDM). The

procedure itself consists of the initialization step, the iteration

step, and the Project Control List. The initialization step

creates a base version of the system. The goal for this initial

implementation is to create a product to which the user can

react. It should offer a sampling of the key aspects of the

problem and provide a solution that is simple enough to

understand and implement easily. To guide the iteration

process, a project control list is created that contains a record

of all tasks that need to be performed. It includes such items

as new features to be implemented and areas of redesign of

the existing solution. The control list is constantly being

revised as a result of the analysis phase.

The iteration involves the redesign and implementation of

iteration is to be simple, straightforward, and modular,

supporting redesign at that stage or as a task added to the

project control list. The level of design detail is not dictated

by the iterative approach. In a light-weight iterative project

the code may represent the major source of documentation of

the system; however, in a critical iterative project a formal

Software Design Document may be used. The analysis of

iteration is based upon user feedback, and the program

analysis facilities available. It involves analysis of the

structure, modularity, usability, reliability, efficiency, &

achievement of goals. The project control list is modified in

light of the analysis results. Figure 2 below describes the

components of the methodology used.

34 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

Figure 2. Reconstructive Iterative Development Model.

3.1. An Overview of the Existing System

The existing system is generally referred to as Simplified

Bluestein Fast Fourier Transforms (SBFFT) algorithm.

The SBFFT Algorithm

3 4 1/2
() (2 /) ()X k esp j N K n x n Nπ  = −

  (19)

3.2. The Proposed System

The proposed system is Extended Improvement on the

Simplified-Bluestein Algorithm (EISBA). The proposed

system works with digital signal inputs. These inputs are

collected from warehouse. The essence is to test the (EISBA)

with a view to determining its computing speed in

comparison with SBFFT algorithm.

3.3. Architecture of the Proposed System

The architecture of the proposed system as shown in figure

3 below describes all the steps and stages necessary for the

development of the proposed EISBA for digital signal

processing. The architecture clearly illustrates the process

and procedures of the iterative development model adopted

in this research. The architecture begins with the DSP data

input (requirement step in the iterative model), followed by

the determination of the present and proposed algorithms (the

design step of the iterative model), followed by the

comparison of both algorithms (the implementation and test

step of the iterative model) and climaxed with the output and

decision state (the review step of the iterative model). The

output and decision stage eventually leads to the desired and

expected result of the research, which is the EISBA.

Figure 3. Architecture of the Proposed System.

 Communications 2017; 5(4): 29-50 35

3.4. Design of the Proposed System

The proposed algorithm results from further

decomposition, re-indexing and simplification of the SBFTT

algorithm. The procedure is outlined below:

3 4 1/2
() (2 /) ()X k esp j N K n x n Nπ  = −

  [SBFFT] (20)

Applying Euler’s trigonometric identity to the definition of
2− j

Ne
π

 yields;

2
2 2 2 2

1 0 1
j

N Cos jSin Cos jSin
N N N Ne

π π π π π− − −   = + = − = + =   
   

 (21)

Simplifying and Substituting the value of eq (20) into eq

(19) and x (n) = ()22 21
(

2
n k n k k

 + − − 
 

 we have;

() ()22 1
2 2 22

1
()

2

j
k

NX k n n k n k ke
π  − − 
   + = + − −

 
 (22)

()
21

22 22 1
1 (

2

k

n k n k k

 − 
   = + − − 

 
 (23)

=
2 2 2 21

(2
2

n k n k nk k
 + − + − 
 

 (24)

=
21

(2 2)
2

k nk k
 − 
 

 (25)

=
2

k nk −
  (26)

Eq (26) shows that there is no variance in the signals going

through platform. By convolution principle, the introduction

of the delta function yields the same signal; hence eq (26)

can be expressed as:

()() ()X k n Y k n xδ+ = + × (27)

Where 2 2() 2 () 2Y k n n k nk+ = + = (28)

Eqn (25) is the resulting algorithm with one

exponentiation, one product and one subtraction. This is a

minimized version of the SBFFT algorithm which has four

exponentiations and five products. Such reduction in the

number of operators can account for speed of the generated

algorithm even as their implementation reveals.

3.5. Implementation Architecture

The various components of the software modules and sub-

modules of the proposed system are clearly described in

figure 4 below.

Figure 4. Implementation Architecture of the Proposed System.

In figure 4 above, the main modules of the system include

FFT algorithms and the proposed algorithm. Each of the

main modules consists of sub-modules. The sub-modules of

the SBFFT algorithm is first iteration and the second

iteration. The sub-module of the proposed algorithm is semi-

EISBA. The sub-modules are implemented (tested) leading to

the determination of the semi-EISBA and the subsequent

EISBA, the expected result of the system.

4. Discussion of Results

The result of this study shows that we can have faster

numerical algorithms other than the SBFFT algorithm for the

processing of digital signals. The EISBA resulted from the

re-indexing and modification of the SBFFT algorithm. The

authors by this result therefore succeeded in developing an

algorithm that is faster than the SBFFT algorithm. The speed

advantage of the developed algorithm is significant enough

that there is a necessary shift of efficiency rate from seconds

to milliseconds. In favour of this study, the developed

algorithm is called EISBA. The computing speed of the

default algorithms was tested on the C
++

 platform.

4.1. Comparison of the Existing System with the Proposed

System

The proposed system when compared with the existing

system is of more efficiency than the existing system. Table 1

below illustrates the comparison more succinctly.

Table 1. Output comparison of the sbfft algorithm with the eisba.

Number
Numerical Algorithms

SBFFT (Sec) EISBA (ms) % Improvement

N=1000 3.50 1.74 77.28%

N=1000 000 1.75 79.28%

Figure 5 below shows the graph of EISBA against the

SBFFT algorithm indicating the computing efficiency of the

EISBA over the SBFFT algorithm.

 Communications 2017; 5(4): 29-50 35

Figure 5. Graph of EISBA against SBFFT Algorithm.

In Figure 5 above, the triangular shape of the graph is

expanded horizontally indicating the direction of the SBFFT

algorithm while the vertical contraction represents the

EISBA. It simply explains that the greater the sample, the

smaller the operation time of the EISBA and the slower the

computing speed of the SBFFT algorithm.

5. Summary and Conclusion

5.1. Summary

In search of a faster algorithm, the established default

algorithm was subjected to re-indexing, decomposition, and

simplification. The re-indexing stage was to define and

substitute each parameter variable in the original SBFFT

algorithm. This effort redefined the apparent structure of SBFFT

algorithm. The decomposition process explored the impact of

the trigonometric identity. Applying this trigonometric identity

into the re-indexed algorithm expanded the algorithm downward

making room for further simplification. This downsized

algorithm provided the direction of the expected EISBA with the

elimination of non-unique arithmetic operators. The presence of

the non-unique operators contributed to the constraints of the

default SBFFT algorithm. Their absence or elimination

contributed to the efficiency of the new algorithm. The

simplification effort adjusted the number of multiplication,

exponentiation, addition, and subtraction operations and

operators. At this stage, the algorithm became narrower, simpler,

and of course faster also.

The three processes described above yielded the EISBA

that when tested on the C
++

 platform, proved faster than the

default SBFFT algorithm. The speed advantage of the EISBA

was as high 1.74 ms. The index frequency, K is the speed

factor in this study. The K factor determines the speed of the

algorithm while the signal index, n determines the quantum

of the signal.

5.2. Conclusion

The result of this study is certainly going to enhance the

computing speed of digital signals. The developed algorithms

are basically recommended for the processing of digital

signals and not analog signals. However, it can also be used

for analog signals only when they are converted to digital

signals. The algorithms were tested on input block width of

1000, and above, and can be implemented on input size of

100 000, and 1000 000 000 without the challenge of storage

overflow.

Appendix

Appendix A: Source Code

• #include <iostream>
• #include <list>
• #include <cstdlib>
• using namespace std;
• int main()
• {
• int choice, item;
• list<int> lt;
• list<int>::iterator it;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Sorting Containers Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element into the List"<<endl;
• cout<<"2.Display Sorted Elements"<<endl;
• cout<<"3.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:

 Communications 2017; 5(4): 29-50 37

• cout<<"Enter the element to be inserted: ";
• cin>>item;
• lt.push_back(item);
• break;
• case 2:
• lt.sort();
• cout<<"Elements of Sorted List: ";
• for (it = lt.begin(); it != lt.end(); ++it)
• cout <<" "<< *it;
• cout << endl;
• break;
• case 3:
• exit(1);
• break;
• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }

 #include <iostream>

• #include <stack>
• #include <string>
• #include <cstdlib>
• using namespace std;
• int main()
• {
• stack<int> st;
• int choice, item;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Stack Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element into the Stack"<<endl;
• cout<<"2.Delete Element from the Stack"<<endl;
• cout<<"3.Size of the Stack"<<endl;

• cout<<"4.Top Element of the Stack"<<endl;
• cout<<"5.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:
• cout<<"Enter value to be inserted: ";
• cin>>item;
• st.push(item);
• break;
• case 2:
• item = st.top();
• st.pop();
• cout<<"Element "<<item<<" Deleted"<<endl;

• break;
• case 3:
• cout<<"Size of the Queue: ";

• cout<<st.size()<<endl;

38 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

• break;
• case 4:
• cout<<"Top Element of the Stack: ";

• cout<<st.top()<<endl;

• break;
• case 5:
• exit(1);
• break;

• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }

• #include <iostream>
• #include <map>
• #include <string>
• #include <cstdlib>
• using namespace std;
• int main()
• {
• map<char,int> mp;
• map<char, int>::iterator it;
• int choice, item;
• char s;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Map Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element into the Map"<<endl;
• cout<<"2.Delete Element of the Map"<<endl;
• cout<<"3.Size of the Map"<<endl;

• cout<<"4.Find Element at a key in Map"<<endl;
• cout<<"5.Dislplay by Iterator"<<endl;
• cout<<"6.Count Elements at a specific key"<<endl;
• cout<<"7.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:
• cout<<"Enter value to be inserted: ";
• cin>>item;
• cout<<"Enter the key: ";
• cin>>s;
• mp.insert(pair<char,int>(s ,item));
• break;
• case 2:
• cout<<"Enter the mapped string to be deleted: ";
• cin>>s;
• mp.erase(s);
• break;
• case 3:
• cout<<"Size of Map: ";

• cout<<mp.size()<<endl;

 Communications 2017; 5(4): 29-50 39

• break;
• case 4:
• cout<<"Enter the key at which value to be found: ";

• cin>>s;
• if (mp.count(s) != 0)
• cout<<mp.find(s)->second<<endl;
• else
• cout<<"No Element Found"<<endl;
• break;
• case 5:
• cout<<"Displaying Map by Iterator: ";

• for (it = mp.begin(); it != mp.end(); it++)
• {
• cout << (*it).first << ": " << (*it).second << endl;
• }
• break;
• case 6:
• cout<<"Enter the key at which number of values to be counted: ";
• cin>>s;
• cout<<mp.count(s)<<endl;
• break;
• case 7:

• exit(1);
• break;

• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }

• #include <iostream>
• #include <stack>
• #include <string>
• #include <cstdlib>
• using namespace std;
• int main()
• {
• stack<int> st;
• int choice, item;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Stack Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element into the Stack"<<endl;
• cout<<"2.Delete Element from the Stack"<<endl;
• cout<<"3.Size of the Stack"<<endl;

• cout<<"4.Top Element of the Stack"<<endl;
• cout<<"5.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:
• cout<<"Enter value to be inserted: ";
• cin>>item;

40 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

• st.push(item);
• break;
• case 2:
• item = st.top();
• st.pop();
• cout<<"Element "<<item<<" Deleted"<<endl;

• break;
• case 3:
• cout<<"Size of the Queue: ";

• cout<<st.size()<<endl;

• break;
• case 4:
• cout<<"Top Element of the Stack: ";

• cout<<st.top()<<endl;

• break;
• case 5:
• exit(1);
• break;

• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }
• #include <iostream>
• #include <forward_list>
• #include <string>
• #include <cstdlib>
• using namespace std;
• int main()
• {
• forward_list<int> fl, fl1 = {5, 6, 3, 2, 7};
• forward_list<int>::iterator it;
• int choice, item;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Forward_List Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element at the Front"<<endl;
• cout<<"2.Delete Element at the Front"<<endl;
• cout<<"3.Front Element of Forward List"<<endl;
• cout<<"4.Resize Forward List"<<endl;
• cout<<"5.Remove Elements with Specific Values"<<endl;
• cout<<"6.Remove Duplicate Values"<<endl;
• cout<<"7.Reverse the order of elements"<<endl;
• cout<<"8.Sort Forward List"<<endl;
• cout<<"9.Merge Sorted Lists"<<endl;
• cout<<"10.Display Forward List"<<endl;
• cout<<"11.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:
• cout<<"Enter value to be inserted at the front: ";
• cin>>item;

 Communications 2017; 5(4): 29-50 41

• fl.push_front(item);
• break;
• case 2:
• item = fl.front();
• fl.pop_front();
• cout<<"Element "<<item<<" deleted"<<endl;
• break;
• case 3:
• cout<<"Front Element of the Forward List: ";
• cout<<fl.front()<<endl;
• break;
• case 4:
• cout<<"Enter new size of Forward List: ";
• cin>>item;
• if (item <= fl.max_size())
• fl.resize(item);
• else
• fl.resize(item, 0);
• break;
• case 5:
• cout<<"Enter element to be deleted: ";
• cin>>item;
• fl.remove(item);
• break;
• case 6:
• fl.unique();
• cout<<"Duplicate Items Deleted"<<endl;
• break;
• case 7:
• fl.reverse();
• cout<<"Forward List reversed"<<endl;
• break;
• case 8:
• fl.sort();
• cout<<"Forward List Sorted"<<endl;
• break;
• case 9:
• fl1.sort();
• fl.sort();
• fl.merge(fl1);
• cout<<"Forward List Merged after sorting"<<endl;
• break;
• case 10:
• cout<<"Elements of Forward List: ";
• for (it = fl.begin(); it != fl.end(); it++)
• cout<<*it<<" ";
• cout<<endl;
• break;
• case 11:
• exit(1);
• break;
• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }

42 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

• #include <iostream>
• #include <algorithm>
• #include <vector>
• using namespace std;
• int main ()
• {
• int first[] = {5,10,15,20,25};
• int second[] = {50,40,30,20,10};
• vector<int> v(10);
• vector<int>::iterator it;
• sort (first, first + 5);
• sort (second, second + 5);
• it = set_difference(first, first + 5, second, second + 5, v.begin());
• v.resize(it - v.begin());
• cout << "The difference has " << (v.size()) << " elements: "<<endl;
• for (it = v.begin(); it != v.end(); ++it)
• cout<< *it<<" ";
• cout <<endl;
• return 0;
• }

• #include <iostream>
• #include <algorithm>
• #include <vector>
• using namespace std;
• int main ()
• {
• int f[] = {5,10,15,20,25};
• int s[] = {50,40,30,20,10};
• vector<int> v(10);
• vector<int>::iterator it;
• sort (f, f + 5);
• sort (s, s + 5);
• it = set_symmetric_difference(f, f + 5, s, s + 5, v.begin());
• v.resize(it - v.begin());
• cout<<"The symmetric difference has "<< (v.size())<< " elements: "<<endl;
• for (it = v.begin(); it != v.end(); ++it)
• cout<< *it<<" ";
• cout <<endl;
• return 0;
• }

 #include <iostream>

• #include <algorithm>
• using namespace std;
• void display(int a[], int n)
• {
• for(int i = 0; i < n; i++)
• {
• cout<<a[i]<<" ";
• }
• cout<<endl;
• }
• int main ()
• {
• int num, i;
• cout<<"Enter number of elements to be inserted: ";

 Communications 2017; 5(4): 29-50 43

• cin>>num;
• int myints[num];
• for (i = 0; i < num; i++)
• {
• cout<<"Enter "<<i + 1<<" element: ";
• cin>>myints[i];
• }
• sort (myints, myints + num);
• cout << "The "<<num<<"! possible permutations with ";
• cout<<num<<" elements: "<<endl;
• do
• {
• display(myints, num);
• }
• while (next_permutation(myints, myints + num));
• return 0;
• }

 #include <iostream>

• #include <algorithm>
• using namespace std;
• void display(int a[], int n)
• {
• for(int i = 0; i < n; i++)
• {
• cout<<a[i]<<" ";
• }
• cout<<endl;
• }
• int main ()
• {
• int num, i;
• cout<<"Enter number of elements to be inserted: ";
• cin>>num;
• int myints[num];
• for (i = 0; i < num; i++)
• {
• cout<<"Enter "<<i + 1<<" element: ";
• cin>>myints[i];
• }
• sort (myints, myints + num);
• reverse (myints, myints + num);
• cout << "The "<<num<<"! possible permutations with ";
• cout<<num<<" elements: "<<endl;
• do
• {
• display(myints, num);
• }
• while (prev_permutation(myints, myints + num));
• return 0;
• }

#include <iostream.h>

#include <ctype.h>

#include <stdlib.h>

typedef int Bool;

44 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

const Bool TRUE = 1;

const Bool FALSE = 0;

void readLetter(char&);

int computeCorrespondingDigit(char);

Bool doOneLetter(); //returns flag saying whether you should quit

void main () {

 Bool flag = FALSE;

 while (!flag) {

 flag = doOneLetter();

 }

}

int exitLetter (char c) {

 return ((c == 'Q') || (c == 'Z'));

}

Bool doOneLetter() {

 char l;

 int i;

 readLetter(l); // returns upper case letter

 if (exitLetter(l)) {

 cout << "Quit." << endl;

 return(TRUE);

 }

 else {

 i = computeCorrespondingDigit(l);

 cout << "The letter " << l << " corresponds to " << i

 << " on the telephone" << endl;

 return(FALSE);

 }

}

int computeCorrespondingDigit (char l) {

 switch (l) {

 case 'A' :

 case 'B' :

 case 'C' :

 return(2);

 case 'D' :

 case 'E' :

 case 'F' :

 return(3);

 case 'G' :

 case 'H' :

 case 'I' :

 return(4);

 case 'J' :

 case 'K' :

 • #include <iostream>
• #include <vector>
• #include <string>
• #include <cstdlib>
• using namespace std;

 Communications 2017; 5(4): 29-50 45

• int main()
• {
• vector<int> ss;
• vector<int>::iterator it;
• int choice, item;
• while (1)
• {
• cout<<"\n---------------------"<<endl;
• cout<<"Vector Implementation in Stl"<<endl;
• cout<<"\n---------------------"<<endl;
• cout<<"1.Insert Element into the Vector"<<endl;
• cout<<"2.Delete Last Element of the Vector"<<endl;
• cout<<"3.Size of the Vector"<<endl;
• cout<<"4.Display by Index"<<endl;
• cout<<"5.Dislplay by Iterator"<<endl;
• cout<<"6.Clear the Vector"<<endl;
• cout<<"7.Exit"<<endl;
• cout<<"Enter your Choice: ";
• cin>>choice;
• switch(choice)
• {
• case 1:
• cout<<"Enter value to be inserted: ";
• cin>>item;
• ss.push_back(item);
• break;
• case 2:
• cout<<"Delete Last Element Inserted:"<<endl;
• ss.pop_back();
• break;
• case 3:
• cout<<"Size of Vector: ";
• cout<<ss.size()<<endl;
• break;
• case 4:
• cout<<"Displaying Vector by Index: ";
• for (int i = 0; i < ss.size(); i++)
• {
• cout<<ss[i]<<" ";
• }
• cout<<endl;
• break;
• case 5:
• cout<<"Displaying Vector by Iterator: ";
• for (it = ss.begin(); it != ss.end(); it++)
• {
• cout<<*it<<" ";
• }
• cout<<endl;
• break;
• case 6:
• ss.clear();
• cout<<"Vector Cleared"<<endl;
• break;
• case 7:
• exit(1);
• break;

46 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

• default:
• cout<<"Wrong Choice"<<endl;
• }
• }
• return 0;
• }

Appendix B

Sample Output

 Communications 2017; 5(4): 29-50 47

48 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

 Communications 2017; 5(4): 29-50 49

Appendix C

Dft Analog Signals (Adapted From [10, 11, 12, 13]).

1. the sine graph starts at zero

2. it repeats itself every 360 degrees (or 2 pi)

3. y is never more than 1 or less than -1 (displacement from the x-axis is called the amplitude)

4. a sin graph 'leads' a cos graph by 90 degrees

5. analog frequency =0.0-1.0 sampling rate

50 Amannah Constance Izuchukwu and H. C. Inyiama: Development of an Extended Improvement on the

Simplified-Bluestein Algorithm

References

[1] Mathuranathan v. (2008). Channel Capacity & Shannon’s
theorem – demystified. Retrieved 14/04/2017 from
http://www.gaussianwaves.com/2008/04/channel-capacity/
Fast wavelet
transformlink.springer.com/chapter/10.1007%2F978-3-319-
22075-8_7by J Gomes - 2015 - Related articles.

[2] Slot L. and Zur S. (2015). Shannon's Noisy-Channel Coding
Theorem. Retrieved 12/03/2017 from
http://homepages.cwi.nl/~schaffne/courses/infcom/2014/prese
ntations/Luca s_Sebastian_NoisyChannelCoding.pdf.

[3] Fraser, D. (1989). Interpolation by the FFT Revisited An
Experimental Investigation, IEEE Transactions on Acoustics,
Speech, and Signal Processing, (37) 5, pp. 665-675.

[4] Matthew, P. D. (2000). Efficient Digital Filters, IEEE
Transactions on Acoustics, Speech and Signal Processing,
ASSP-.

[5] Sanjit, K. M. (2001). Digital Signal Processing: A Computer
Approach, McGraw-Hill, New York.

[6] Yin, L. G., Agiieswari, K. R., (2005). Evaluation of DSP
Based Numerical Relay for Over Current Protection Centre
for Communication Service Convergence Technologies
(CCSCT). Department of Electronics and Communication
Engineering, Beijing China.

[7] Areva, T. D. (1995). Network Protection and Automation
Guide. Prentice Hall. New Jersey.

[8] http://www.jstor.org/stable/3680137 Accessed: 30/07/2012
23:37.

[9] Good, I. J. “The interaction algorithm and practical fourier
analysis”. Journal of the royal statistical society, series B 20
(2): 361–372 JSTOR 2983896, 1958.

(https://www.jstor.or/state/2983896). Addendum, ibid. 22 (2),
375 (1960).

[10] Thomas, L. H. (1963). Using Computers to solve problems in
Physics. Applications of Digital computers. Bostom: Ginn.

[11] Pavan Kumar K. M., Priya Jain, Ravi Kiran S, Rohith N.,
Ramamani K. FFT Algorithm: A Survey. The International
Journal of Engineering and Science (IJES) Volume 2 Issue 4
pages 22-26, 2013 ISSN (e): 2319-1813.

[12] Standard 982. 1 – 1988. Piscataway, N. J: IEEE. Jessica Keyes
software Engineering productivity handbook. Windcrest/MC.

[13] Pfleeger, S. L. and C. McGowam 1990. Software metrics in
the process maturity framework. Journal of Systems Software.
12:255-261.

[14] https://www.researchgate.net/publication/221920249
Complex_Digital_Signal_Processing_in_T
elecommunications [accessed May 29, 2017].

[15] Godsill S. (2014). 3F3 Digital Signal Processing (DSP).
Retrieved 27/05/2017 from https://www-
sigproc.eng.cam.ac.uk/foswiki/pub/Main/3F3/3F3__Digital_S
ignal_Processing_(DSP)_2015_1 -49.pdf.

[16] Drago D. (2012). Theory of Signal. Retrieved 14/06/2017
from http://www.informatics.buzdo.com/p030-signal-
theory.htm Heckbert P. (1998). Fourier Transforms and the
Fast Fourier Transform (FFT) Algorithm. Retrieved
02/05/2017 from
https://www.cs.cmu.edu/afs/andrew/scs/cs/15-
463/2001/pub/www/notes/fourier/fourier.pdf.

[17] Vladimir, P. and Zlatka, N., Georgi, I., Miglen, O., (2011).
Complex Digital Signal Processing in Telecommunications:
Applications of Digital Signal Processing, Dr. Christian
Cuadrado-Laborde (Ed.), 307-406.

[18] Saeed, B. (2003). Interpolation in Digital Signal Processing
and Numerical Analysis. New York: Springer-Verlag.

