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Abstract: This research was designed to develop an extended improvement on the simplified Bluestein algorithm (EISBA). 

The methodology adopted in this work was iterative and incremental development design. The major technologies used in this 

work are the numerical algorithms and the C
++

 programming technologies and the wave concept technology. The C
++

 served as 

a signal processing language simulator (SPLS). In the EISBA, the DSP input is encountered first. It is subjected to some 

numerical processing which included testing for efficiency on the C
++

 platform. This test platform provided the basis for 

comparison leading to the desired EISBA. The approach adopted in the study was the re-indexing, decomposing, and 

simplifying the default SBFFT algorithm. The computing speed of the default algorithms was tested on the C
++

 platform. The 

average execution time of the SBFFT was 3.50 seconds. Similarly, the average execution time of the EISBA was 1.74 ms. this 

result therefore shows that a version of algorithm with computing speed that is faster than that of SBFFT algorithm exist. The 

algorithms were tested on input block of width 1000 units, and above, and can be implemented on input size of 100 000, and 

1000 000 000 without the challenge of storage overflow. The input samples tested in this work was the discretized pulse wave 

form with undulating shape out of which the binary equivalents were extracted. Other forms of signals may also be tested in 

the EISBA provided they are interpreted in the digital wave type.  
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1. Introduction 

(1). BACKGROUND TO THE STUDY 

The most popular digital filters are described and 

compared in this work. There are only two ways that are 

common for information to be represented in naturally 

occurring signals. We will call this information represented in 

the time domain, and information represented in the 

frequency domain. Analog signals can also be processed 

digitally using Digital Signal Processing techniques (DSPTs). 

To process analog signals digitally, an interface between the 

analog signal and a digital processor is required. This 

interface is known as analog-to-digital converter (ADC). The 

output of the analog-to-digital converter is a digital signal. 

This digital signal is appropriate for digital processor. The 

digital signal processor may be a large programmable digital 

computer or a small microprocessor. In electronics, computer 

science and mathematics, a digital filter is a system that 

performs numerical operations on a sampled, discrete-time 

signal to reduce or enhance certain aspects of that signal.  

The extended improved simplified Bluestein algorithm 

(EISBA) will prove to be an adequate technology for transiting 

from analog to digital broadcasting in Nigeria and elsewhere in 

the world.. The major technologies used in this work are the 

numerical algorithms and the C
++

 programming technologies 

and the wave concept technology. Numerical algorithms are 

used as filters to manipulate or process digital signals so that 

their operation times can be determined and compared 

accordingly. The C
++

 technology is used to implement the 

proposed EISBA. The C
++

 here acted as a signal processing 

language simulator (SPLS). The SPLS simulated the designed 

EISBA using sampled input data available in the warehouse. 

The wave concept technology is used to represent discrete data 

samples expressed in binary format. The undulating shape of 

the wave indicates the binary values it contains. The lower 

bound of the wave represents zero while the upper bound 

represents one. When the binary values are collected together, 

they can be further converted into numerical or decimal values 
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at which point, they can be used in testing the algorithms, the 

existing and the proposed.  

STATEMENT OF THE PROBLEM  

The speed and scope of transmitting from analog to digital 

remain issues that need scientific resolution. In view of the 

foregoing and for effective transition from analog to digital 

transmission, an efficient computing algorithmic platform is 

a requirement. This research is therefore designed to develop 

an efficient numerical algorithm necessary for achieving the 

speed of processing digital signals in digital computers.  

(2). AIM OBJECTIVES OF THE STUDY 

The aim of the study is to develop an extended 

improvement on the simplified Bluestein algorithm. In order 

to attain this aim, the following objectives were considered; 

a) To investigate the simplified Bluestein fast Fourier 

transforms (SBFFT) algorithm for Digital Signal 

Processing  

b) To design an EISBA for Digital Signal Processing 

c) To determine the computing speed improvement of the 

EISBA for Digital Signal processing 

d) To apply warehouse input technology to test and 

compare the speed of the SBFFT algorithm with the 

faster Bluestein numerical algorithm 

(3). SCOPE OF THE STUDY 

This study is restricted to the software approach of DSP-

algorithm implementation on a minicomputer or a personal 

computer. A detailed discussion of hardware, firmware, and 

DSP chip implementation is beyond the scope of this study. 

SIGNIFICANCE OF THE STUDY 

The EISBA will provide part of the required directions for 

transiting from terrestrial analog broadcasting to digital 

broadcasting. The developed EISBA when implemented will 

provide an optimized computing framework for simulating signals 

associated with speech, image, communication, and so on. 

2. Related Literature 

2.1. Theoretical Framework 

Theories related to signal transmission, conversion and 

processing are discussed, below. 

(1). Shannon-Hartley theorem [1] 

The Shannon–Hartley theorem [1] states the channel 

capacity C, meaning the theoretical tightest upper bound on 

the information rate of data that can be communicated at an 

arbitrarily low error rate using an average received signal 

power S through an analog communication channel subject to 

additive white Gaussian noise of power N: 

C = Blog2 (1+ S/N)                         (1) 

where; 

C is the channel capacity in bits per second, a theoretical 

upper bound on the net bit rate (information rate, sometimes 

denoted I) excluding error-correction codes; 

B is the bandwidth of the channel in hertz (passband 

bandwidth in case of a bandpass signal); 

S is the average received signal power over the bandwidth 

(in case of a carrier-modulated passband transmission, often 

denoted C), measured in watts (or volts squared); 

N is the average power of the noise and interference over 

the bandwidth, measured in watts (or volts squared); and 

S/N is the signal-to-noise ratio (SNR) or the carrier-to-

noise ratio (CNR) of the communication signal to the noise 

and interference at the receiver (expressed as a linear power 

ratio, not as logarithmic decibels). 

In information theory, the Shannon–Hartley theorem tells 

the maximum rate at which information can be transmitted 

over a communications channel of a specified bandwidth in 

the presence of noise. It is an application of the noisy-

channel coding theorem to the archetypal case of a 

continuous-time analog communications channel subject to 

Gaussian noise. The theorem establishes Shannon's channel 

capacity for such a communication link, a bound on the 

maximum amount of error-free information per time unit that 

can be transmitted with a specified bandwidth in the presence 

of the noise interference, assuming that the signal power is 

bounded, and that the Gaussian noise process is characterized 

by a known power or power spectral density. The law is 

named after Claude Shannon and Ralph Hartley. 

(2). Noisy Channel Coding Theorem and Capacity [2] 

The Shannon theorem states that given a noisy channel 

with channel capacity C and information transmitted at a rate 

R, then if R<C there exist codes that allow the probability of 

error at the receiver to be made arbitrarily small. This means 

that, theoretically, it is possible to transmit information nearly 

without error at any rate below a limiting rate, C. 

In information theory, the noisy-channel coding theorem 

(sometimes Shannon's theorem), establishes that for any 

given degree of noise contamination of a communication 

channel, it is possible to communicate discrete data (digital 

information) nearly error-free up to a computable maximum 

rate through the channel. 

 

Figure 1. Block Diagram of Noisy-Channel Coding Theorem SOURCE: [2]. 

2.2. History of Digital Signal Processing (DSP) 

Digital signal processing (DSP) became a discipline about 

20 years ago, although its roots date longer. According to [2], 

DSP is the generic term for techniques such as filtering or 

spectrum analysis applied to digitally sampled signals, 

mathematical analysis of inherently digital signals (examples 

sunspot data, tide data) was developed by Gauss (1800), 

Schuster (1896) and many others. Electronic DSP was first 

extensively applied in geophysics (for oil-exploration) then 

military applications, and is now fundamental to 

communications, mobile devices, broadcasting, and most 

applications of signal and image processing. The spark that 

generated the ensuing great activity was the realization that 

digital computer technology was on the verge of great leaps 

forward in both speed and miniaturization. This made it 
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possible to predict that traditional analog processing devices 

such as filters and spectrum analyzers would become digital 

and result in big improvements for many applications. 

Acoustic signals such as speech, seismic, and sonar signals 

were prime candidates for digital processing because of their 

relatively low bandwidths [2].  

According to [2, 3], DSP originated in the 1960s and 

1970s when digital computers first came into limelight. 

Computers were expensive during this era, and DSP was 

limited to only a few critical applications. Pioneering efforts 

were made in four key areas: radar and sonar, where national 

security was at risk; oil exploration, where large amounts of 

money could be made; space exploration, where the data are 

irreplaceable; and medical imaging, where lives could be 

saved. The personal computer revolution of the 1980s and 

1990s caused DSP to explode with new applications. Rather 

than being motivated by military and government needs, DSP 

was suddenly driven by the commercial marketplace. Anyone 

who thought they could make money in the rapidly 

expanding field was suddenly a DSP vendor. DSP reached 

the public in such products as: mobile telephones, compact 

disc players, and electronic voice mail. 

DSP algorithms have long been run on standard 

computers, specialized processors called digital signal 

processor on purpose-built hardware such as application-

specific integrated circuit (ASICs). Today there are additional 

technologies used for digital signal processing including 

more powerful general purpose microprocessor, field-

programmable gate arrays (FPGAs), digital signal controllers 

and stream processors, among others. 

2.3. Fast Fourier Transforms (FFT) 

[4, 5] indicated that the FFT revolutionized DSP. It is an 

elegant and highly effective algorithm that is still the 

building block used in many state-of-the-art algorithms in 

speech processing, communications, frequency estimation. 

There are many different FFT algorithms involving a wide 

range of mathematics, from simple complex-number 

arithmetic to group theory and number theory. The DFT is 

obtained by decomposing a sequence of values into 

components of different frequencies. An FFT is a way to 

compute the same result more quickly: computing the DFT 

of N points in the naive way, using the definition, takes O 

(N2) arithmetical operations, while an FFT can compute the 

same DFT in only (NlogN) operations. The difference in 

speed can be enormous, especially for long data sets where N 

may be in the thousands or millions. In practice, the 

computation time can be reduced by several orders of 

magnitude in such cases, and the improvement is roughly 

proportional to (NlogN). The FFTs are of great importance to 

a wide variety of applications, from digital signal processing 

and solving partial differential equations to algorithms for 

quick multiplication of large integers. The best-known FFT 

algorithms depend upon the factorization of N, but there are 

FFTs with (NlogN) complexity for all N, even for prime N. 

Many FFT algorithms only depend on the fact that ��
���
�

is an 

N-th primitive root of unity, and thus can be applied to 

analogous transforms over any finite field, such as number-

theoretic transforms. Since the inverse DFT is the same as 

the DFT, but with the opposite sign in the exponent and a 
1 �	  factor, any FFT algorithm can easily be adapted for it. 

Let x0,…, x � − 1  be complex numbers. The DFT is 

defined by the formula 

�� = ∑ ��������	���
���

�
� 	� = 0,… . � − 1              (2) 

Evaluating this definition directly requires o ���  
operations; there are N outputs XK, and each output requires a 

sum of N terms (Johnson and Frigo, 2007). 

2.4. Discrete Fourier Transform (DFT)  

When a signal is discrete and periodic, continuous Fourier 

transform is of less importance, [6, 7] instead we use the 

discrete Fourier transform, (DFT). Suppose our signal is an 

where n = 0... N-1, and an = an +JN for all n and j. The 

discrete Fourier transform of a, also known as the spectrum 

of a, is: 

!� =	∑ ��"��� 	#�$�
���
���                             (3) 

This is commonly written: 

!# =	∑ %�
#&$�

���
���                                (4) 

Where 

%� 	= 	 ��"	���                                           (5) 

And %�
# for k=0... N-1 are called the Nth roots of unity. 

They’re called this because, in complex arithmetic, �%�
# � =

1 for all k. They are vertices of a regular polygon inscribed in 

the unit circle of the complex plane (Heckbert, 1998). 

2.5. Fast Wavelet Transform (FWT) 

The fast wavelet transform (FWT) algorithm is the basic 

tool for computation with wavelets. The forward transform 

converts a signal representation from the time (spatial) 

domain to its representation in wavelet basis. [8, 9] produced 

a fast wavelet decomposition and reconstruction algorithm. 

The mallat algorithm for discrete wavelet transform (DWT) 

is a classical scheme in the signal processing community, 

known as a two-channel sub-band coder using conjugate 

quadrature filters or quadrature mirror filters (QMFs). 

'��( : = 	 2+〈-�. , ∅�2+. − 0 〉                       (6) 

Where ∅  is the scaling function of the chosen wavelet 

transform; in practice by any suitable sampling procedure 

under the condition that the signal is highly oversampled, so 

2+345�6 : = 	∑ '�(	∅	7�(8�&9�∈;                          (7) 

Replacing the Haar basis with a basis of wavelets with 

vanishing moments, and assuming that the coefficients 

'#< , = = 1,2, … , � are given, we replace the expressions with 

the formulae and  
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'#+ = ∑ ℎ�'�?�#��
+�����@

���                             (8) 

A#
+ = ∑ B�'�?�#��

+�����@
���                              (9) 

Where '#+  and A#
+

 are viewed as periodic sequences with 

the period 	2��+ . The formulae defines an orthogonal 

mapping: C���+?� → C���+?� , converting the coefficients 

'#+��
 with = = 1,2, … , 2��+?�  into the coefficients '#+ , A#

+	
 

with = = 1,2, … 2��+, and the inverse of Oj is given by the 

formulae 

'��+�� = ∑ ℎ�#'�+ − = + 1#�@
#�� + ∑ B�#

#�@
#�� A��#?�

+
      (10) 

'����
+�� = ∑ ℎ�#��'��#?�

+#�@
#�� + ∑ B�#��A��#?�

+#�@
#��        (11) 

Obviously, given a function f of the form 

-�� =
∑ '#+2

&�(
� F G2��+� − �= − 1 H +�&�(

#��

∑ A#
+2

&�(
� F�2��+� − �= − 1  �&�(

#��               (12) 

It can be expressed in the form  

-�� ∑ 'I+�I2
&�(JK

� F�2��+?I� − �L − 1 �&�(JM
I��        (13) 

With 

'I+��, L = 1,2, … . , 2��+?I                      (14) 

2.6. Prime-Factor Fast Fourier Transform 

The prime-factor algorithm (PFA), also called the Good–

Thomas algorithm (1958/1963), is a fast Fourier transform 

(FFT) algorithm that re-expresses the discrete Fourier 

transform (DFT) of a size N = N1N2 as a two-dimensional 

N1×N2 DFT, but only for the case where N1 and N2 are 

relatively prime. These smaller transforms of size N1 and N2 

can then be evaluated by applying PFA recursively or by 

using some other FFT algorithm [10]. 

Prime factor algorithm (PFA) should not be confused with 

the mixed-radix generalization of the popular Cooley–Tukey 

algorithm, which also subdivides a DFT of size N = N1N2 into 

smaller transforms of size N1 and N2. The latter algorithm can 

use any factors (not necessarily relatively prime), but it has 

the disadvantage that it also requires extra multiplications by 

roots of unity called twiddle factors, in addition to the 

smaller transforms. On the other hand, PFA has the 

disadvantages that it only works for relatively prime factors 

(e.g. it is useless for power-of-two sizes) and that it requires a 

more complicated re-indexing of the data based on the 

Chinese remainder theorem (CRT). Note, however, that PFA 

can be combined with mixed-radix Cooley–Tukey, with the 

former factorizing N into relatively prime components and 

the latter handling repeated factors. 

The prime factor algorithm (PFA) is also closely related to 

the nested Winograd FFT algorithm, where the latter 

performs the decomposed N1 by N2 transform via more 

sophisticated two-dimensional convolution techniques. Some 

older studies therefore also call Winograd's algorithm a PFA 

FFT. Although the PFA is distinct from the Cooley–Tukey 

algorithm, Good's 1958 work on the PFA was cited as 

inspiration by Cooley and Tukey in their famous 1965 paper, 

and there was initially some confusion about whether the two 

algorithms were different. In fact, it was the only prior FFT 

work cited by them, as they were not then aware of the 

earlier research by Gauss and others. [11, 12]. 

The PFA involves a re-indexing of the input and output 

arrays, which when substituted into the DFT formula 

transforms it into two nested DFTs (a two-dimensional DFT). 

2.7. Bruun’s Algorithm 

Bruun's algorithm is a fast Fourier transform (FFT) 

algorithm based on an unusual recursive polynomial-

factorization approach, proposed for powers of two by G. 

Bruun in 1978 and generalized to arbitrary even composite 

sizes by H. Murakami in 1996. Because its operations 

involve only real coefficients until the last computation stage, 

it was initially proposed as a way to efficiently compute the 

discrete Fourier transform (DFT) of real data. Bruun's 

algorithm has not seen widespread use, however, as 

approaches based on the ordinary Cooley–Tukey FFT 

algorithm have been successfully adapted to real data with at 

least as much efficiency as possible. Furthermore, there is 

evidence that Bruun's algorithm may be intrinsically less 

accurate than Cooley–Tukey in the face of finite numerical 

precision [13]. 

Nevertheless, Bruun's algorithm illustrates an alternative 

algorithmic framework that can express both itself and the 

Cooley–Tukey algorithm, and thus provides an interesting 

perspective on FFTs that permits mixtures of the two 

algorithms and other generalizations. 

�# = ∑ �
���

���
�

���
��� 0=	= = 0,… , � − 1.              (15) 

For convenience, let us denote the N root of unity by 

N�
��0 = 0,… , � − 1 : 

N�
� = �����

� �
                                      (16) 

And define the polynomial x (z) whose coefficients are xn 

��O ∑ ��O� .���
���                               (17) 

The DFT can then be understood as a reduction of this 

polynomial; that is Xk is given by  

�# = ��N�
# = ��O PQA	�O − N�

�                 (18) 

Where mod denotes the polynomial remainder operation. 

The key to fast algorithms like Bruun’s or cooley-Tukey 

comes from the fact that one can perform this set of N 

remainder operations in recursive stages. 

2.8. Complex DSP Versus Real DSP 

Digital Signal Processing is carried out by mathematical 

operations. In comparison, word processing and similar 
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programs merely rearrange stored data. This means that 

computers designed for business and other general 

applications are not optimized for algorithms such as digital 

filtering and Fourier analysis. Digital Signal Processors are 

microprocessors specifically designed to handle Digital 

Signal Processing tasks [14].  

Complex numbers are an extension of the ordinary 

numbers used in everyday math. They have the unique 

property of representing and manipulating two variables as a 

single quantity. This fits very naturally with Fourier analysis, 

where the frequency domain is composed of two signals, the 

real and the imaginary parts. Complex numbers shorten the 

equations used in DSP, and enable techniques that are 

difficult or impossible with real numbers alone [14, 15]. 

Digital Signal Processing (DSP) is a vital tool for scientists 

and engineers, as it is of fundamental importance in many 

areas of engineering practice and scientific research. The 

“alphabet” of DSP is mathematics although most practical 

DSP problems can be solved by using real number 

mathematics, there are many others which can only be 

satisfactorily resolved or adequately described by means of 

complex numbers. If real number mathematics is the 

language of real DSP, then complex number mathematics is 

the language of complex DSP. In the same way that real 

numbers are a part of complex numbers in mathematics, real 

DSP can be regarded as a part of complex DSP [15].  

2.9. Complex Representation of Signals and Systems 

Complex numbers offer a compact representation of the 

most often-used waveforms in signal processing – sine and 

cosine waves [15, 16]. The complex number representation of 

sinusoids is an elegant technique in signal and circuit analysis 

and synthesis, applicable when the rules of complex math 

techniques coincide with those of sine and cosine functions. 

Sinusoids are represented by complex numbers; these are then 

processed mathematically and the resulting complex numbers 

correspond to sinusoids, which match the way sine and cosine 

waves would perform if they were manipulated individually. 

The complex representation technique is possible only for sine 

and cosine waves of the same frequency, manipulated 

mathematically by linear systems. 

All naturally-occurring signals are real; however in some 

signal processing applications it is convenient to represent a 

signal as a complex-valued function of an independent 

variable. For purely mathematical reasons, the concept of 

complex number representation is closely connected with 

many of the basics of electrical engineering theory, such as 

voltage, current, impedance, frequency response, transfer-

function, Fourier and z-transforms, and so on. Complex DSP 

has many areas of application, one of the most important 

being modern telecommunications, which very often uses 

narrowband analytical signals; these are complex in nature 

[16].  

2.10. Complex DSP Applications in Telecommunications 

Telecommunication systems very commonly require 

processing to occur in real time, adaptive complex filtering 

being amongst the most frequently-used complex DSP 

techniques. When multiple communication channels are to be 

manipulated simultaneously, parallel processing systems are 

indicated [16, 17]. An efficient Adaptive Complex Filter Bank 

(ACFB) scheme is presented here, together with a short 

exploration of its application for the mitigation of narrowband 

interference signals in MIMO (Multiple-Input Multiple-

Output) communication systems. DSP is making a significant 

contribution to progress in many diverse areas of human 

endeavour – science, industry, communications, health care, 

security and safety, commercial business, space technologies 

etc. Based on powerful scientific mathematical principles, 

complex DSP has overlapping boundaries with the theory of, 

and is needed for many applications in, telecommunications. 

Modern telecommunications very often uses narrowband 

signals, such as NBI (Narrowband Interference), RFI (Radio 

Frequency Interference), and so on. These signals are complex 

by nature and hence it is natural for complex DSP techniques 

to be used to process them [16, 17, 18] 

3. Methodology 

The design model adopted in this work was the 

Reconstructive Iterative Development Model (RIDM). The 

procedure itself consists of the initialization step, the iteration 

step, and the Project Control List. The initialization step 

creates a base version of the system. The goal for this initial 

implementation is to create a product to which the user can 

react. It should offer a sampling of the key aspects of the 

problem and provide a solution that is simple enough to 

understand and implement easily. To guide the iteration 

process, a project control list is created that contains a record 

of all tasks that need to be performed. It includes such items 

as new features to be implemented and areas of redesign of 

the existing solution. The control list is constantly being 

revised as a result of the analysis phase. 

The iteration involves the redesign and implementation of 

iteration is to be simple, straightforward, and modular, 

supporting redesign at that stage or as a task added to the 

project control list. The level of design detail is not dictated 

by the iterative approach. In a light-weight iterative project 

the code may represent the major source of documentation of 

the system; however, in a critical iterative project a formal 

Software Design Document may be used. The analysis of 

iteration is based upon user feedback, and the program 

analysis facilities available. It involves analysis of the 

structure, modularity, usability, reliability, efficiency, & 

achievement of goals. The project control list is modified in 

light of the analysis results. Figure 2 below describes the 

components of the methodology used. 
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Figure 2. Reconstructive Iterative Development Model. 

3.1. An Overview of the Existing System  

The existing system is generally referred to as Simplified 

Bluestein Fast Fourier Transforms (SBFFT) algorithm.  

The SBFFT Algorithm 

3 4 1/2
( ) ( 2 / ) ( )X k esp j N K n x n Nπ  = −

              (19) 

3.2. The Proposed System 

The proposed system is Extended Improvement on the 

Simplified-Bluestein Algorithm (EISBA). The proposed 

system works with digital signal inputs. These inputs are 

collected from warehouse. The essence is to test the (EISBA) 

with a view to determining its computing speed in 

comparison with SBFFT algorithm.  

3.3. Architecture of the Proposed System 

The architecture of the proposed system as shown in figure 

3 below describes all the steps and stages necessary for the 

development of the proposed EISBA for digital signal 

processing. The architecture clearly illustrates the process 

and procedures of the iterative development model adopted 

in this research. The architecture begins with the DSP data 

input (requirement step in the iterative model), followed by 

the determination of the present and proposed algorithms (the 

design step of the iterative model), followed by the 

comparison of both algorithms (the implementation and test 

step of the iterative model) and climaxed with the output and 

decision state (the review step of the iterative model). The 

output and decision stage eventually leads to the desired and 

expected result of the research, which is the EISBA. 

 

Figure 3. Architecture of the Proposed System. 
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3.4. Design of the Proposed System 

The proposed algorithm results from further 

decomposition, re-indexing and simplification of the SBFTT 

algorithm. The procedure is outlined below: 

3 4 1/2
( ) ( 2 / ) ( )X k esp j N K n x n Nπ  = −

   [SBFFT]   (20) 

Applying Euler’s trigonometric identity to the definition of 
2− j

Ne
π

 yields; 

2
2 2 2 2

1 0 1
j

N Cos jSin Cos jSin
N N N Ne

π π π π π− − −   = + = − = + =   
   

       (21) 

Simplifying and Substituting the value of eq (20) into eq 

(19) and x (n) = ( )22 21
(

2
n k n k k

 + − − 
 

 we have;  

( ) ( )22 1
2 2 22

1
( )

2

j
k

NX k n n k n k ke
π  − − 
   + = + − −

 
      (22) 

( )
21

22 22 1
1 (

2

k

n k n k k

 − 
   = + − − 

 
             (23) 

= 
2 2 2 21

( 2
2

n k n k nk k
 + − + − 
 

              (24) 

=
21

(2 2 )
2

k nk k
 − 
 

                                 (25) 

= 
2

k nk −
                                                 (26) 

Eq (26) shows that there is no variance in the signals going 

through platform. By convolution principle, the introduction 

of the delta function yields the same signal; hence eq (26) 

can be expressed as: 

( )( ) ( )X k n Y k n xδ+ = + ×                     (27) 

Where 2 2( ) 2 ( ) 2Y k n n k nk+ = + =             (28) 

Eqn (25) is the resulting algorithm with one 

exponentiation, one product and one subtraction. This is a 

minimized version of the SBFFT algorithm which has four 

exponentiations and five products. Such reduction in the 

number of operators can account for speed of the generated 

algorithm even as their implementation reveals.  

3.5. Implementation Architecture 

The various components of the software modules and sub-

modules of the proposed system are clearly described in 

figure 4 below. 

 

Figure 4. Implementation Architecture of the Proposed System. 

In figure 4 above, the main modules of the system include 

FFT algorithms and the proposed algorithm. Each of the 

main modules consists of sub-modules. The sub-modules of 

the SBFFT algorithm is first iteration and the second 

iteration. The sub-module of the proposed algorithm is semi-

EISBA. The sub-modules are implemented (tested) leading to 

the determination of the semi-EISBA and the subsequent 

EISBA, the expected result of the system. 

4. Discussion of Results 

The result of this study shows that we can have faster 

numerical algorithms other than the SBFFT algorithm for the 

processing of digital signals. The EISBA resulted from the 

re-indexing and modification of the SBFFT algorithm. The 

authors by this result therefore succeeded in developing an 

algorithm that is faster than the SBFFT algorithm. The speed 

advantage of the developed algorithm is significant enough 

that there is a necessary shift of efficiency rate from seconds 

to milliseconds. In favour of this study, the developed 

algorithm is called EISBA. The computing speed of the 

default algorithms was tested on the C
++

 platform. 

4.1. Comparison of the Existing System with the Proposed 

System 

The proposed system when compared with the existing 

system is of more efficiency than the existing system. Table 1 

below illustrates the comparison more succinctly. 

Table 1. Output comparison of the sbfft algorithm with the eisba. 

Number 
Numerical Algorithms 

SBFFT (Sec) EISBA (ms) % Improvement 

N=1000 3.50 1.74 77.28% 

N=1000 000 1.75 79.28%  

Figure 5 below shows the graph of EISBA against the 

SBFFT algorithm indicating the computing efficiency of the 

EISBA over the SBFFT algorithm. 
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Figure 5. Graph of EISBA against SBFFT Algorithm. 

In Figure 5 above, the triangular shape of the graph is 

expanded horizontally indicating the direction of the SBFFT 

algorithm while the vertical contraction represents the 

EISBA. It simply explains that the greater the sample, the 

smaller the operation time of the EISBA and the slower the 

computing speed of the SBFFT algorithm.  

5. Summary and Conclusion 

5.1. Summary  

In search of a faster algorithm, the established default 

algorithm was subjected to re-indexing, decomposition, and 

simplification. The re-indexing stage was to define and 

substitute each parameter variable in the original SBFFT 

algorithm. This effort redefined the apparent structure of SBFFT 

algorithm. The decomposition process explored the impact of 

the trigonometric identity. Applying this trigonometric identity 

into the re-indexed algorithm expanded the algorithm downward 

making room for further simplification. This downsized 

algorithm provided the direction of the expected EISBA with the 

elimination of non-unique arithmetic operators. The presence of 

the non-unique operators contributed to the constraints of the 

default SBFFT algorithm. Their absence or elimination 

contributed to the efficiency of the new algorithm. The 

simplification effort adjusted the number of multiplication, 

exponentiation, addition, and subtraction operations and 

operators. At this stage, the algorithm became narrower, simpler, 

and of course faster also. 

The three processes described above yielded the EISBA 

that when tested on the C
++

 platform, proved faster than the 

default SBFFT algorithm. The speed advantage of the EISBA 

was as high 1.74 ms. The index frequency, K is the speed 

factor in this study. The K factor determines the speed of the 

algorithm while the signal index, n determines the quantum 

of the signal.  

5.2. Conclusion 

The result of this study is certainly going to enhance the 

computing speed of digital signals. The developed algorithms 

are basically recommended for the processing of digital 

signals and not analog signals. However, it can also be used 

for analog signals only when they are converted to digital 

signals. The algorithms were tested on input block width of 

1000, and above, and can be implemented on input size of 

100 000, and 1000 000 000 without the challenge of storage 

overflow.  

Appendix 

Appendix A: Source Code 

•  #include <iostream> 
•  #include <list> 
•  #include <cstdlib> 
•  using namespace std; 
•  int main() 
•  { 
•      int choice, item; 
•      list<int> lt; 
•      list<int>::iterator it; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Sorting Containers Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element into the List"<<endl; 
•          cout<<"2.Display Sorted Elements"<<endl; 
•          cout<<"3.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
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•              cout<<"Enter the element to be inserted: "; 
•              cin>>item; 
•              lt.push_back(item); 
•              break; 
•          case 2: 
•              lt.sort(); 
•              cout<<"Elements of Sorted List: "; 
•              for (it = lt.begin(); it != lt.end(); ++it) 
•                  cout <<"  "<< *it; 
•              cout << endl; 
•              break; 
•          case 3: 
•              exit(1); 
•              break; 
•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 
 

  #include <iostream> 

•  #include <stack> 
•  #include <string> 
•  #include <cstdlib> 
•  using namespace std; 
•  int main() 
•  { 
•      stack<int> st; 
•      int choice, item; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Stack Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element into the Stack"<<endl; 
•          cout<<"2.Delete Element from the Stack"<<endl; 
•   cout<<"3.Size of the Stack"<<endl; 

•          cout<<"4.Top Element of the Stack"<<endl; 
•          cout<<"5.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
•              cout<<"Enter value to be inserted: "; 
•              cin>>item; 
•              st.push(item); 
•              break; 
•          case 2: 
•              item = st.top(); 
•              st.pop(); 
•       cout<<"Element "<<item<<" Deleted"<<endl; 

•              break; 
•          case 3: 
•       cout<<"Size of the Queue: "; 

•       cout<<st.size()<<endl; 
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•              break; 
•          case 4: 
•       cout<<"Top Element of the Stack: "; 

•       cout<<st.top()<<endl; 

•              break; 
•          case 5: 
•              exit(1); 
•       break; 

•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 
 

•  #include <iostream> 
•  #include <map> 
•  #include <string> 
•  #include <cstdlib> 
•  using namespace std; 
•  int main() 
•  { 
•      map<char,int> mp; 
•      map<char, int>::iterator it; 
•      int choice, item; 
•      char s; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Map Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element into the Map"<<endl; 
•          cout<<"2.Delete Element of the Map"<<endl; 
•   cout<<"3.Size of the Map"<<endl; 

•          cout<<"4.Find Element at a key in Map"<<endl; 
•          cout<<"5.Dislplay by Iterator"<<endl; 
•          cout<<"6.Count Elements at a specific key"<<endl; 
•          cout<<"7.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
•              cout<<"Enter value to be inserted: "; 
•              cin>>item; 
•              cout<<"Enter the key: "; 
•              cin>>s; 
•              mp.insert(pair<char,int>(s  ,item)); 
•              break; 
•          case 2: 
•              cout<<"Enter the mapped string to be deleted: "; 
•              cin>>s; 
•              mp.erase(s); 
•              break; 
•          case 3: 
•       cout<<"Size of Map: "; 

•       cout<<mp.size()<<endl; 
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•              break; 
•          case 4: 
•       cout<<"Enter the key at which value to be found: "; 

•              cin>>s; 
•              if (mp.count(s) != 0) 
•                  cout<<mp.find(s)->second<<endl; 
•              else 
•                  cout<<"No Element Found"<<endl; 
•              break; 
•          case 5: 
•       cout<<"Displaying Map by Iterator: "; 

•              for (it = mp.begin(); it != mp.end(); it++) 
•              { 
•                  cout << (*it).first << ": " << (*it).second << endl; 
•              } 
•              break; 
•          case 6: 
•              cout<<"Enter the key at which number of values to be counted: "; 
•              cin>>s; 
•              cout<<mp.count(s)<<endl; 
•              break; 
•   case 7: 

•              exit(1); 
•       break; 

•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 
 

•  #include <iostream> 
•  #include <stack> 
•  #include <string> 
•  #include <cstdlib> 
•  using namespace std; 
•  int main() 
•  { 
•      stack<int> st; 
•      int choice, item; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Stack Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element into the Stack"<<endl; 
•          cout<<"2.Delete Element from the Stack"<<endl; 
•   cout<<"3.Size of the Stack"<<endl; 

•          cout<<"4.Top Element of the Stack"<<endl; 
•          cout<<"5.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
•              cout<<"Enter value to be inserted: "; 
•              cin>>item; 



40 Amannah Constance Izuchukwu and H. C. Inyiama:  Development of an Extended Improvement on the   

Simplified-Bluestein Algorithm 

•              st.push(item); 
•              break; 
•          case 2: 
•              item = st.top(); 
•              st.pop(); 
•       cout<<"Element "<<item<<" Deleted"<<endl; 

•              break; 
•          case 3: 
•       cout<<"Size of the Queue: "; 

•       cout<<st.size()<<endl; 

•              break; 
•          case 4: 
•       cout<<"Top Element of the Stack: "; 

•       cout<<st.top()<<endl; 

•              break; 
•          case 5: 
•              exit(1); 
•       break; 

•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 
•  #include <iostream> 
•  #include <forward_list> 
•  #include <string> 
•  #include <cstdlib> 
•  using namespace std; 
•  int main() 
•  { 
•      forward_list<int> fl, fl1 = {5, 6, 3, 2, 7}; 
•      forward_list<int>::iterator it; 
•      int choice, item; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Forward_List Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element at the Front"<<endl; 
•          cout<<"2.Delete Element at the Front"<<endl; 
•          cout<<"3.Front Element of Forward List"<<endl; 
•          cout<<"4.Resize Forward List"<<endl; 
•          cout<<"5.Remove Elements with Specific Values"<<endl; 
•          cout<<"6.Remove Duplicate Values"<<endl; 
•          cout<<"7.Reverse the order of elements"<<endl; 
•          cout<<"8.Sort Forward List"<<endl; 
•          cout<<"9.Merge Sorted Lists"<<endl; 
•          cout<<"10.Display Forward List"<<endl; 
•          cout<<"11.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
•              cout<<"Enter value to be inserted at the front: "; 
•              cin>>item; 



 Communications 2017; 5(4): 29-50 41 

 

•              fl.push_front(item); 
•              break; 
•          case 2: 
•              item = fl.front(); 
•              fl.pop_front(); 
•              cout<<"Element "<<item<<" deleted"<<endl; 
•              break; 
•          case 3: 
•              cout<<"Front Element of the Forward List: "; 
•              cout<<fl.front()<<endl; 
•              break; 
•          case 4: 
•              cout<<"Enter new size of Forward List: "; 
•              cin>>item; 
•              if (item <= fl.max_size()) 
•                  fl.resize(item); 
•              else 
•                  fl.resize(item, 0); 
•              break; 
•          case 5: 
•              cout<<"Enter element to be deleted: "; 
•              cin>>item; 
•              fl.remove(item); 
•              break; 
•          case 6: 
•              fl.unique(); 
•              cout<<"Duplicate Items Deleted"<<endl; 
•              break; 
•          case 7: 
•              fl.reverse(); 
•              cout<<"Forward List reversed"<<endl; 
•              break; 
•          case 8: 
•              fl.sort(); 
•              cout<<"Forward List Sorted"<<endl; 
•              break; 
•          case 9: 
•              fl1.sort(); 
•              fl.sort(); 
•              fl.merge(fl1); 
•              cout<<"Forward List Merged after sorting"<<endl; 
•              break; 
•          case 10: 
•              cout<<"Elements of Forward List:  "; 
•              for (it = fl.begin(); it != fl.end(); it++) 
•                  cout<<*it<<"  "; 
•              cout<<endl; 
•              break; 
•          case 11: 
•              exit(1); 
•          break; 
•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 
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•  #include <iostream> 
•  #include <algorithm> 
•  #include <vector> 
•  using namespace std; 
•  int main () 
•  { 
•      int first[] = {5,10,15,20,25}; 
•      int second[] = {50,40,30,20,10}; 
•      vector<int> v(10); 
•      vector<int>::iterator it; 
•      sort (first, first + 5); 
•      sort (second, second + 5); 
•      it = set_difference(first, first + 5, second, second + 5, v.begin()); 
•      v.resize(it - v.begin()); 
•      cout << "The difference has " << (v.size()) << " elements: "<<endl; 
•      for (it = v.begin(); it != v.end(); ++it) 
•          cout<< *it<<"  "; 
•      cout <<endl; 
•      return 0; 
•  } 
 

•  #include <iostream> 
•  #include <algorithm> 
•  #include <vector> 
•  using namespace std; 
•  int main () 
•  { 
•      int f[] = {5,10,15,20,25}; 
•      int s[] = {50,40,30,20,10}; 
•      vector<int> v(10); 
•      vector<int>::iterator it; 
•      sort (f, f + 5); 
•      sort (s, s + 5); 
•      it = set_symmetric_difference(f, f + 5, s, s + 5, v.begin()); 
•      v.resize(it - v.begin()); 
•      cout<<"The symmetric difference has "<< (v.size())<< " elements: "<<endl; 
•      for (it = v.begin(); it != v.end(); ++it) 
•          cout<< *it<<"  "; 
•      cout <<endl; 
•      return 0; 
•  } 
 

 #include <iostream> 

•  #include <algorithm> 
•  using namespace std; 
•  void display(int a[], int n) 
•  { 
•      for(int i = 0; i < n; i++) 
•      { 
•          cout<<a[i]<<"  "; 
•      } 
•      cout<<endl; 
•  } 
•  int main () 
•  { 
•      int num, i; 
•      cout<<"Enter number of elements to be inserted: "; 
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•      cin>>num; 
•      int myints[num]; 
•      for (i = 0; i < num; i++) 
•      { 
•          cout<<"Enter "<<i + 1<<" element: "; 
•          cin>>myints[i]; 
•      } 
•      sort (myints, myints + num); 
•      cout << "The "<<num<<"! possible permutations with "; 
•      cout<<num<<" elements: "<<endl; 
•      do 
•      { 
•          display(myints, num); 
•      } 
•      while (next_permutation(myints, myints + num)); 
•      return 0; 
•  } 
 

  #include <iostream> 

•  #include <algorithm> 
•  using namespace std; 
•  void display(int a[], int n) 
•  { 
•      for(int i = 0; i < n; i++) 
•      { 
•          cout<<a[i]<<"  "; 
•      } 
•      cout<<endl; 
•  } 
•  int main () 
•  { 
•      int num, i; 
•      cout<<"Enter number of elements to be inserted: "; 
•      cin>>num; 
•      int myints[num]; 
•      for (i = 0; i < num; i++) 
•      { 
•          cout<<"Enter "<<i + 1<<" element: "; 
•          cin>>myints[i]; 
•      } 
•      sort (myints, myints + num); 
•      reverse (myints, myints + num); 
•      cout << "The "<<num<<"! possible permutations with "; 
•      cout<<num<<" elements: "<<endl; 
•      do 
•      { 
•          display(myints, num); 
•      } 
•      while (prev_permutation(myints, myints + num)); 
•      return 0; 
•  } 
 

#include <iostream.h> 

#include <ctype.h> 

#include <stdlib.h> 

 

typedef int Bool; 
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const Bool TRUE = 1; 

const Bool FALSE = 0; 

 

void readLetter(char&); 

int computeCorrespondingDigit(char); 

Bool doOneLetter(); //returns flag saying whether you should quit 

 

void main () { 

  Bool flag = FALSE; 

 

  while (!flag) { 

    flag = doOneLetter(); 

  } 

}   

 

int exitLetter (char c) { 

  return ((c == 'Q') || (c == 'Z')); 

} 

 

Bool doOneLetter() { 

  char l; 

  int i; 

 

  readLetter(l); // returns upper case letter 

  if (exitLetter(l)) { 

    cout << "Quit." << endl; 

    return(TRUE); 

  } 

  else { 

    i = computeCorrespondingDigit(l); 

    cout << "The letter " << l << " corresponds to " << i  

      << " on the telephone" << endl; 

    return(FALSE); 

  } 

} 

 

int computeCorrespondingDigit (char l) { 

  switch (l) { 

  case 'A' :  

  case 'B' : 

  case 'C' :  

    return(2); 

  case 'D' :  

  case 'E' : 

  case 'F' :  

    return(3); 

  case 'G' :  

  case 'H' : 

  case 'I' :  

    return(4); 

  case 'J' :  

  case 'K' : 

  •  #include <iostream> 
•  #include <vector> 
•  #include <string> 
•  #include <cstdlib> 
•  using namespace std; 
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•  int main() 
•  { 
•      vector<int> ss; 
•      vector<int>::iterator it; 
•      int choice, item; 
•      while (1) 
•      { 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"Vector Implementation in Stl"<<endl; 
•          cout<<"\n---------------------"<<endl; 
•          cout<<"1.Insert Element into the Vector"<<endl; 
•          cout<<"2.Delete Last Element of the Vector"<<endl; 
•          cout<<"3.Size of the Vector"<<endl; 
•          cout<<"4.Display by Index"<<endl; 
•          cout<<"5.Dislplay by Iterator"<<endl; 
•          cout<<"6.Clear the Vector"<<endl; 
•          cout<<"7.Exit"<<endl; 
•          cout<<"Enter your Choice: "; 
•          cin>>choice; 
•          switch(choice) 
•          { 
•          case 1: 
•              cout<<"Enter value to be inserted: "; 
•              cin>>item; 
•              ss.push_back(item); 
•              break; 
•          case 2: 
•              cout<<"Delete Last Element Inserted:"<<endl; 
•              ss.pop_back(); 
•              break; 
•          case 3: 
•              cout<<"Size of Vector: "; 
•              cout<<ss.size()<<endl; 
•              break; 
•          case 4: 
•              cout<<"Displaying Vector by Index: "; 
•              for (int i = 0; i < ss.size(); i++) 
•              { 
•                  cout<<ss[i]<<" "; 
•              } 
•              cout<<endl; 
•              break; 
•          case 5: 
•              cout<<"Displaying Vector by Iterator: "; 
•              for (it = ss.begin(); it != ss.end(); it++) 
•              { 
•                  cout<<*it<<" "; 
•              } 
•              cout<<endl; 
•              break; 
•          case 6: 
•              ss.clear(); 
•              cout<<"Vector Cleared"<<endl; 
•              break; 
•          case 7: 
•              exit(1); 
•              break; 
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•          default: 
•              cout<<"Wrong Choice"<<endl; 
•          } 
•      } 
•      return 0; 
•  } 

Appendix B 

Sample Output 

 

 

 



 Communications 2017; 5(4): 29-50 47 

 

 

 

 



48 Amannah Constance Izuchukwu and H. C. Inyiama:  Development of an Extended Improvement on the   

Simplified-Bluestein Algorithm 

 

 

 



 Communications 2017; 5(4): 29-50 49 

 

Appendix C 

Dft Analog Signals (Adapted From [10, 11, 12, 13]). 

 

 

 

1. the sine graph starts at zero  

2. it repeats itself every 360 degrees (or 2 pi)  

3. y is never more than 1 or less than -1 (displacement from the x-axis is called the amplitude) 

4. a sin graph 'leads' a cos graph by 90 degrees  

5. analog frequency =0.0-1.0 sampling rate 
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